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Abstract. Petri nets are a class of models of computation used to com-
pactly represent discrete event systems. Among many application do-
mains, they have now become the most prominent formalism to express
process models in Process Mining, thanks to their formal semantics that
enables automated analysis techniques. In this context, model repair is
the task of aligning a process model with actual executions of the process.
Current solutions to model repair do not allow for embedding domain
knowledge, providing guarantees of rigor, and enforcing structural re-
quirements at the same time. In this paper, we fill this gap by proposing
an approach based on the Inductive Logic Programming system ILASP.
We then implement our approach and perform an experimental evalua-
tion, showing both its expressiveness and feasibility.

Keywords: Petri nets · Process Mining · Model Repair · Answer Set Program-
ming · Inductive Logic Programming.

1 Introduction

Process Mining (PM) [3] is an interdisciplinary field at the intersection of Busi-
ness Process Management (BPM) [29] and Data Mining that aims at getting
insight into operational processes by analyzing event logs as recorded by enter-
prise information systems. An operational process, or simply a process, expresses
the relationships among the activities an organization performs to achieve a goal,
such as delivering a particular service or product. Several formalisms have been
proposed to model and reason about processes, including Linear Temporal Logic
on process traces [19, 12] and Petri nets [2, 4], the de facto standard model in
BPM. An event log, i.e., the collection of activities the organization executes
while enacting the process, can then be analyzed to perform various PM tasks.
In particular, Model Repair is the task of revising a process model to make it
conformant to the log [17]. This is of particular interest in heavily regulated
environments, where handwritten process models need to be updated to reflect
the actual behavior of the organization while, at the same time, preserving as
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much information as possible from the original model, usually containing rele-
vant domain knowledge. Multiple solutions exist to repair Petri nets [18, 26, 7].
However, none of them allow the user to easily specify the edit operations, the
structural properties of the net [1], or to exploit domain knowledge [27], e.g., by
specifying portions of the net that should not be involved with the edits. Besides,
those approaches do not guarantee full conformance to the log. In this paper,
we work towards overcoming these limitations, by proposing a fully declarative,
user-customizable framework for Petri net model repair based on the Induc-
tive Logic Programming system ILASP. Our experiments show the proposed
approach is effective on medium-sized Petri nets where domain knowledge about
repairs is available.
Related works. The model repair problem was first proposed in [25]. This work is
similar to ours in that they both consider Petri nets as the language to express
process models and use Inductive Logic Programming (ILP; [14]) as a solution
approach. With respect to this work, our approach is more general in that it
does not require — but supports — negative examples, and it allows users to
define arbitrary edit operations. The first procedural approach to model repair
is proposed in [18]. Such an approach is based on adding subprocesses to the
original net. The approach computes non-fitting subtraces in a place and then
applies standard discovery algorithms to determine the subprocess accepting
those subtraces. The subprocesses, once added to the model, make the whole
trace accepted. Differently from our approach, their approach does not allow
the removal of arcs or nodes from the input model, thus significantly increasing
the size of the Petri net and decreasing its readability. In [26], a set of edit
operations is defined, each with a corresponding cost, and the model repair
problem is formalized as a search for edits that maximizes the fitness score
within a total cost bound. However, the only edits allowed are insertion and
skipping of activities, rather than structural changes of the net. Related works
have already investigated the application of ILP and Answer Set Programming
(ASP; [24]) to Process Mining. Besides being used for model repair [25], ILP
has also been applied in other Process Mining tasks. It was first put forward in
[21] as a language to represent processes as sets of integrity constraints. Then, it
was used in [9] to learn declarative models. These works use logic programming
constraints directly as a process model rather than as a language to represent
the process models. This approach has been followed by recent works about ASP
applications to Process Mining [11, 10, 13].

2 Background

This section recaps basic definitions that will be relevant for the rest of the paper,
namely, Petri nets, Answer Set Programming, and Inductive Logic Programming.

2.1 Event Logs and Petri nets

Each execution of a process generates a trace, which is modeled as a finite se-
quence π ∈ Σ∗, where Σ is a finite set of symbols that model the process activi-
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ties. For our purposes, an event log is a multiset of traces, representing examples
of process behavior. An (accepting) Petri net M = (P, T,W,m0,mf , λ) is de-
fined by a weighted bipartite graph over two sets P and T , called respectively
places and transitions. The graph’s directed edges E are implicitly defined by
the function W that assigns to each arc e ∈ (P ×T )∪ (T ×P ) a weight w ∈ N>0

if e ∈ E and 0 if e ̸∈ E. For each x ∈ (P ∪ T ), its sets of incoming and out-
going edges are respectively denoted as •x (called pre-set) and x• (post-set). A
marking is a function m : P 7→ N that assigns to each place a certain number
of tokens. The markings m0 and mf of the net are referred to as the initial and
final marking, respectively. The labeling function λ : T → Σ associate to each
transition t ∈ T an activity λ(t) ∈ Σ.

We say that a transition t is enabled in a marking m if m(p) ≥ W (p, t)
for all p ∈ •t. Firing t in m yields a new marking m′ defined by m′(p) =
m(p) − W (p, t) + W (t, p) for each p ∈ P . When t fires, it consumes W (p, t)
tokens from each place p ∈ •t and produces W (t, p) new tokens in each place p ∈
t•. A sequence of transitions t1, . . . , tk is a complete firing sequence for a Petri net
M if, for each i ∈ [1..k], the transition ti is enabled in mi−1, and firing it yields
mi, where mk = mf . Applying λ to each transition of a complete firing sequence
t1, . . . , tk induces a trace λ(t1), . . . , λ(tk). The language L(M) of a Petri netM
is the set of its traces. Intuitively, transitions are associated with activities that
occur within a process execution, while places implicitly model pre- and post-
conditions of activities. The initial and final markings encode, respectively, the
starting condition and the desired final state after the execution of the process.

2.2 Answer Set Programming

Answer Set Programming (ASP; [8]) is a declarative programming paradigm
widely used to solve combinatorial search and optimization problems. This sec-
tion briefly recaps the syntax and semantics of ASP. We assume that the readers
are familiar with logic and refer them to [20, 24] for a more exhaustive overview.
Syntax. An ASP program Π is a finite set of (normal) rules r, defined as:

a0 ← a1, . . . , am,not am+1, . . . ,not an.

where each ai for i ∈ [0..n] is an atom, and not stands for default negation. An
atom is expressed as p(t), where p is a predicate, and t is a (possibly empty)
vector of term, each of which is either a variable or a constant. H(r) = {a0} is
known as head of the rule r, while the body of r is partitioned into the positive or
negative body atoms, respectively defined as B+(r) = {a1, . . . , am} and B−(r) =
{am+1, . . . , an}. The rule r is called a fact if B+(r)∪B−(r) = ∅, and a constraint
if H(r) = {⊥}, where ⊥ is a predicate without terms representing the constant
false. As syntactic sugar, we can write a choice rule c of the form:

b{a1; . . . ; ak}u← ak+1, . . . , am,not am+1, . . . ,not an.

where each ai, for i ∈ [0, .., n], is an atom, and b and u are non-negative integers.
The head of c is H(c) = {a1, . . . , ak}.
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Semantics. The semantics of Π is defined in terms of its equivalent proposi-
tional instantiation G(Π). To compute it, we replace each rule r ∈ Π with
all its possible instantiation obtained by substituting the variables in r with
constants occurring in Π. An interpretation I is a set of (true) propositional
atoms occurring in G(Π) that does not contain ⊥. An interpretation I satisfies
a normal rule r ∈ G(Π) if B+(r) ⊆ I and B−(r) ∩ I = ∅ imply H(r) ⊆ I.
Similarly, I satisfies a choice rule c ∈ G(Π) if B+(c) ⊆ I and B−(c) ∩ I = ∅
imply b ≤ |H(c) ∩ I| ≤ u. The interpretation I is a model of Π if it satisfies
all rules r ∈ G(Π) and all choice rules c ∈ G(Π), and I is stable if it is a
subset-minimal model of the reduct {H(r) ← B+(r) | r ∈ Π,B−(r) ∩ I = ∅} ∪
{a0 ← B+(c) | c ∈ G(Π), B−(c) ∩ I = ∅, a0 ∈ H(c) ∩ I}. The set of all stable
models of Π, also called answer sets, is denoted by AS (Π).

2.3 Learning from Answer Sets

Inductive Logic Programming (ILP) is a symbolic machine learning technique
that uses logic programs as inductive bias [14]. ILASP is a state-of-the-art ILP
system to learn ASP programs [22]. A learning from answer sets (LAS) task is
a tuple T = (H,B,E+, E−), where H is the hypothesis space, defining a set of
candidate rules, B is an ASP program called background knowledge, while E+

and E− are set of positive and negative examples, respectively. Each example
is denoted with a triple (Inc,Exc, C), where Inc and Exc are sets of atoms,
called inclusion and exclusion set, respectively, and C is an ASP program, called
context. We say that an interpretation I is an accepting answer set of an example
(Inc,Exc, C) with respect to B if I ∈ AS (B ∪ C) such that Inc ⊆ I and
Exc∩I = ∅. Given a LAS task T , ILASP searches for an inductive solution h ⊆
H such that (i) for each positive example e ∈ E+, there is some accepting answer
set of e with respect to B∪h, and (ii) for any negative example e ∈ E−, there is
no accepting answer set of e with respect to B∪h. Together with T , ILASP allows
the definition of a scoring function σ to be used as optimization criteria, which
by default is the length of the solution. ILASP returns an inductive solution h
that is optimal wrt σ, i.e., there is no other h′ ⊆ H such that σ(h′) < σ(h).

3 Model Repair in ILASP

In the context of process mining, the Model Repair problem consists of modifying
a process model M to make it conform to an event log L [17]. Especially when
M originates from domain experts’ modeling, it is desirable to repair it while
preserving as much structure as possible, to potentially retain its interpretability
and valuable information. In this section, we illustrate how to set the elements
of a LAS task (namely, hypothesis space, background knowledge, and examples)
to tackle the model repair of a Petri net. The learned solution represents edit
operations that, applied to M, make it satisfy the structural requirements and
accept all the traces in L.

Given a Petri net M = (P, T,W,m0,mf , λ), we denote by [M] its encoding
into ASP containing the following facts:
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– place(p) for each p ∈ P ;
– trans(t, l) for each t ∈ T , where λ(t) = l;
– ptarc(p, t, w) for each p ∈ P and t ∈ T , where W (p, t) = w and w > 0;
– tparc(t, p, w) for each p ∈ P and t ∈ T , where W (t, p) = w and w > 0;
– initial_marking(p, n) where m0(p) = n with n > 0;
– final_marking(p, n) where mf (p) = n with n > 0.

Throughout the section, we will refer to the Petri net M as the original model
and define the ASP program ΠM = {original(x) : x ∈ [M]}.

3.1 Hypothesis Space

The hypothesis space of our ILP task contains edit operations that are allowed on
the original Petri netM. The formal semantics of edit operations is provided in
terms of ASP rules, contained in a program called ΠH . We define the hypothesis
space explicitly through ΠH as this setting yields a flexible framework where
users can customize the model repair actions in a declarative fashion. Given an
original Petri net M, AS(ΠH ∪ [M]) contains all the possible edit actions that
ILASP considers forM. We assume that each input action is an atom of the form
add(x) or remove(x), where x can be any fact defined in M. In the following,
we provide an example of a possible definition of ΠH involving only edits to the
arcs of the bipartite graph:

1 remove(tparc(T,P,W)) :- place(P), trans(T,_), tparc(T,P,W).
2 remove(ptarc(P,T,W)) :- place(P), trans(T,_), ptarc(P,T,W).
3 add(tparc(T,P,1)) :- place(P), trans(T,_), not tparc(T,P,_).
4 add(ptarc(P,T,1)) :- place(P), trans(T,_), not ptarc(P,T,_).
5 abducible(add(A),1) :- add(A).
6 abducible(add(A),C) :- add(A,C).
7 abducible(remove(A),1) :- remove(A).
8 abducible(remove(A),C) :- remove(A,C).
9 { head(A): abducible(A,C) } = 1.

10 #show. #show (C,A) : head(A), abducible(A,C).

The first four lines define the possible edit actions considered in this example:
lines 1-2 define a set of atoms remove(x), for each x matching the signature
tparc or ptarc in [M]; while lines 3-4 define add(x), for each x matching the
signature tparc or ptarc involving places and transitions in [M] without edges
connecting them (in this example, the new arcs have a default weight equal to
1). Lines 5-8 define the possible abducible atoms, generating the search space
through the choice rule at line 9. Lastly, line 10 specifies to return each answer
set as a pair (C,A) where C represents the cost of including each action in the
learned hypothesis, i.e., σ(A)=C. Lines 5 and 7 set C to 1 if no cost is specified (as
is the case in our example); however, lines 6 and 8 allow us to recognize different
costs if a second term is used with add or remove. Our framework enumerates
all the solutions in AS(ΠH ∪ [M]) and transforms each pair (C,A) to reflect the
ILASP syntax of an element of the search space, namely: C ~A., storing them
in a temporary file H.
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The above program shows edit actions involving only the arcs ofM; however,
any element can be added or removed from the search space by the addition
of similar rules. For example, in our experiments in Section 4.1, we add the
rule remove(place(P)) :- place(P) to also allow actions that remove places
from M. It is important to keep in mind that increasing the search space, may
lead to a considerable increase in the time required to solve the ILP problem.
Consequently, it is desirable to limit the space of possible modification actions
as much as possible. If the users desire to find a set of edit actions that avoid
editing part of the original Petri net (for instance, because they know that those
elements are correct, or they want to keep the exact meaning for that part of
the model) they can provide facts of the form frozen(x) to prevent any kind of
edit involving the place or transition x. Then, it is sufficient to add the literals
not frozen(P) and not frozen(T) in the body of any rule defining remove
and add. We evaluate these effects in our experiments in Section 4.2.

3.2 Background Knowledge

The background knowledge B of our learning task is split into three parts: ΠM,
Πedit, which produces a new Petri net by applying the edit operations to M,
and lastly Πsemantics, which represent the ASP program modeling the Petri net
semantics. The logic program Πedit contains the following rules:

1 valid(E) :- original(E), not remove(E).
2 valid(E) :- add(E).
3 place(P) :- valid(place(P)).
4 trans(T,L) :- valid(trans(T,L)).
5 ptarc(P,T,W) :- valid(ptarc(P,T,W)).
6 tparc(T,P,W) :- valid(tparc(T,P,W)).
7 initial_marking(T,W) :- valid(initial_marking(T,W)).
8 final_marking(T,W) :- valid(final_marking(T,W)).

Lines 1-2 assume as facts the edit operations add(e) and remove(e) selected
by ILASP as the current inductive hypothesis and define how they affect the
original model, producing in lines 3-8 a revised Petri net, M′.

The ASP program Πsemantics is an adaption of the one introduced in [6]. It
takes in input the original model ΠM and Πedit, together with a trace modeled by
a set of facts trace(i, l), stating that at the time i, the label l was observed. Then,
it verifies whether the considered trace represents a complete firing sequence with
respect to M′. The facts over the predicate trace are defined in the context of
ILASP examples. Similarly to the encoding in [6], Πsemantics defines the atoms
time(i) with i ranging from 0 to k (where k is the length of the trace), establishing
the horizon time for computing the marking. The atoms holds(p, q, i) entail
that after firing the i-th transition, there are q tokens on place p. The atoms
enabled(t, i) are true if the transition t is enabled at time i, while the atoms
fires(t, i) are defined non-deterministically through a choice rule, stating that
the transition t is fired at time i. Πsemantics differs from encoding in [6] with
respect to the firing condition, as we consider the interleaving semantics:
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1 0 { fires(T,TS) } 1 :-
2 trace(TS,A), trans(T,A), enabled(T,TS), time(TS), last(L), TS <= L.
3 :- not fires(_,TS), time(TS), last(L), TS <=L.
4 :- fires(T1,TS), fires(T2,TS), T1 > T2, time(TS).
5 :- last(L), final_marking(F,T), not holds(F, T, L+1).
6 :- last(L), final_marking(F,T), place(P), P != F, holds(P,C,L+1), C > 0.

The rule in lines 1-2 chooses the atoms fires(t, i) for each time point i ∈ [1..k],
where k is the length of the trace, encoded by the atom last(k). Considering the
constraints in lines 3-4, for each i, there is exactly one atom fires(t, i) defining
the fired transition, selected among those enabled at time i and with a label
matching the activity specified by the trace. Lines 5-6 define the condition to
recognize the current trace as a complete firing sequence; namely, at the last
step, the marking produced by a firing sequence for the input trace matches mf .

3.3 Positive and Negative Examples

The positive and negative examples of our LAS task derive from two elements:
the event log L and the structural requirements. The former can be split into
two sets, L+ and L− containing respectively traces that should or should not
characterize the considered process. We allow this flexibility since it has recently
been observed that negative examples are a valuable source of information, and
thus being increasingly adopted in industry [5, 28]. However, our setting allows
performing model repair even when L− is empty. Each trace π = a0, . . . , ak ∈ L+

(resp. L−) is encoded as a context-dependent positive example (resp. negative
example), with empty inclusions and exclusions, while the context is the set of
ASP facts trace(i, ai) stating that the i-th event in the trace is the activity ai.
In this way, we use ILASP examples to encode input traces.

Example 1. Consider two traces acef ∈ L+ and acf ∈ L−; their examples are:

#pos(id1, {}, {}, { trace(0,a). trace(1,c). trace(2,e). trace(3,f).} ).
#neg(id2, {}, {}, { trace(0,a). trace(1,c). trace(2,f).} ).

Besides conformance on L, we also exploited negative examples to enforce struc-
tural properties to the revised model by defining in their context the ASP rules
containing constraints that are triggered when a desired condition is not met.

Example 2. Consider the following example, forcing to obtain a Petri net where
each node can be reached in the execution of a complete firing sequence.

1 #neg(id3, {}, {}, {
2 node(P) :- place(P).
3 node(T) :- trans(T,_).
4 edge(X,Y) :- ptarc(X,Y,_).
5 edge(X,Y) :- tparc(X,Y,_).
6 start(X) :- initial_marking(X,_).
7 end(X) :- final_marking(X,_).
8 reach(X,X) :- start(X).
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9 reach(X,X) :- end(X).
10 reach(X,Y) :- edge(X,Y).
11 reach(X,Z) :- reach(X,Y), edge(Y,Z).
12 :- node(X), start(S), not reach(S,X).
13 :- node(X), end(S), not reach(X,S).
14 :- edge(S,_), end(S).
15 :- edge(_,S), start(S). }).

The connected property is obtained with a reachability test. Lines 2-5 define
the nodes and edges of the graph, considering places and transitions identically.
Lines 6-7 set the places in the initial and final marking as possibly starting and
ending nodes, respectively. Lines 8-13 define the classical reachability property,
and lines 14-15 state that there should be no ingoing or outgoing edges from a
place that is an initial or final marking, respectively.

3.4 Learned Hypothesis and Implementation Notes

To recap, our setting defines a LAS task (H,B,E+, E−), where the hypothesis
space H is produced by the program ΠH , the background knowledge B consists
of ΠM ∪ Πedit ∪ Πsemantics and the set of positive examples E+ is obtained
from L+, while the negative examples E− are derived from L−, as well as from
the structural requirements. Then, ILASP will search for the optimal hypothesis
h ⊆ H where the logic program ΠM ∪ Πedit ∪ h represents the revised Petri
net [M′] and for each trace defined in the context C of a positive example,
[M′]∪Πsemantics∪C is satisfiable (namely, C ∈ L(M′)), while for each negative
example [M′] ∪Πsemantics ∪ C is unsatisfiable (namely, C ̸∈ L(M′)). When C
represents structural characteristics, thenM′ is conformant to them.

Our setting uses version 2i of ILASP since we observe the best performance
for learning tasks that do not consider noisy examples (although this option is
easily achievable by design [22]). During our experiments (Section 4), we ob-
served a clear speed-up4 in the learning time when only positive examples were
used. For this reason, we revised the background knowledge and examples in
our implementation to encode the equivalent learning tasks expressed only with
positive examples. To do so, we add the atom fail in the head of each con-
straint of the background knowledge and in the context of the examples [23].
Then, we add the rule ok :- not fail in Πsemantics and rewrite every exam-
ple as follows: for each positive example, we add in the inclusion set the atom
ok; while each negative example is transformed in a positive example, adding in
the exclusion set the atom ok.

Example 3. Consider the two traces from Example 1. We can express them as
positive examples as follows:

#pos(id1, {ok}, {}, { trace(0,a). trace(1,c). trace(2,e). trace(3,f).} ).
#pos(id2, {}, {ok}, { trace(0,a). trace(1,c). trace(2,f).} ).

4 We conjecture this might be related to how negative examples are handled in ILASP.
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Fig. 1: A workflow net (from [1]) with a token in its initial place (we indicate
the final place with double circle). Places are circles and transitions are squares
with the label written in them. Each arc has a weight equal to 1.

4 Implementation and Experiments

After defining our approach, we implemented and assessed its feasibility for
tackling the model repair problem. Our code, settings, and detailed results from
experiments are available online 5. In the repository, we provide scripts to map
the default representation formats for logs (i.e., XES) and Petri nets (i.e., PNML)
into a LAS task, as well as helper scripts to define the hypothesis space from
the file ΠH . The experiments consider a test case to evaluate the quality of the
repairs found, as well as aggregate results for evaluating the performance of our
approach with respect to the percentage of edits introduced on a synthetic model
originating from real logs. We run the experiments on a MacBook Pro (Apple
M3 Pro Chip with 18GB RAM on Sonoma 14.5), running ILASP version 4.4.0
and the ASP system clingo 5.7.1.

4.1 Repair Discovered Models

For our first experiment, we targeted a Petri net with structural requirements
[1]. More precisely, we consider a WorkFlow net (WF-net), namely a Petri net
where (i) there exists a place i such that •i = ∅, called the initial place; (ii) there
exists a place o such that o• = ∅, called the final place; (iii) every place and every
transition is located on a path from i to o. Here, the initial (resp. final) marking
is intended to be the marking with exactly one token in the initial (resp. final)
place and no token in the other places.

Starting from the WF-net in Fig 1, we generate a log containing 1000 traces
by simulation. Their length ranges from 4 to 63 activities, with an average of 9.
This yields 369 execution variants. Then, we use the Alpha Miner algorithm, as
implemented in ProM [16], to discover a model from the log, obtaining the model
in Fig. 2a with the version Alpha and Alpha+, and the model in Fig. 2b with
Alpha++. This plugin quickly discovers Petri nets, however it is not possible to
specify structural properties, nor there are guarantees on a complete coverage of
the traces in the log. Indeed, none of the discovered models are WF-nets. The
one in Figure 2a has two disconnected transitions — the ones labeled with b and
d —, while in the one in Figure 2b the transition labeled with d is not on a path
from the initial to the final place. Moreover, the language of the original model
5 www.github.com/ainnoot/ilp-pn-repair

www.github.com/ainnoot/ilp-pn-repair
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(a) Version alpha and alpha+
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(b) Version alpha++
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(c) Repair of (a)

a

b
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c

e

f

(d) Repair of (b)

Fig. 2: Models learned with Alpha Miner (a), (b) and their repair, respectively (c), (d)

in Fig 1, contains traces with multiple executions of activities c and e, while,
the one of model in Fig 2a contains only traces with a single execution of these
activities, and the language of Fig 2b is empty.

To test our approach, we consider the two models produced by Alpha Miner
and repair them to be conformant to the log and satisfy the structural properties
of a WF-net. More precisely, we transform each trace in the log as a positive ex-
ample and add the negative6 example introduced in Example 2 that characterize
the structure of a WF-net. The hypothesis space contains edit actions that add
arcs or remove arcs or places. In Figure 2c and Figure 2d, we can see that the
repairs, depicted as dashed elements, successfully restore the original model.

4.2 Assess Performance

For our second experiment, we consider a process model extracted from the
Domestic Declaration event log [15], collecting events about expenses approval
& reimbursement process in an academic setting. From this event log, we learn
a model using the Inductive Miner algorithm with the default parameters using
the ProM toolkit [16]. We prefer it over the Alpha Miner for its ability to discover
more accurate models from complex, real-world data. The model obtained is a
WF-net with 16 places, 25 transitions (for a total of 41 nodes), and 52 edges.
Subsequently, we edited the model by randomly adding or removing 20 arcs
(which is equivalent to 40% of the model’s edges) and applied our approach to
find the repairs that restored the original model. The language of the model is
finite, producing a total of 424 traces that were used as positive examples, and
we consider a single negative example for the structural property of a WF-net
(see Example 2). We tested the edits incrementally (ranging from 10% to 40% of
the model’s edges) to evaluate the overlap between the learned hypothesis and
the original model, as well as the learning time required to obtain them. At the

6 Because of performance, we transform it in a positive example; see Section 3.4.
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10% Edits 20% Edits 30% Edits 40% Edits
#s Ovlp Time #s Ovlp Time #s Ovlp Time #s Ovlp Time

0% 10 94.0 0.885 10 94.0 15.870 9 88.7 42.204 7 82.9 53.771
4% 10 96.0 0.747 10 94.0 3.263 9 88.6 21.800 9 86.7 42.584
8% 10 96.0 0.554 10 96.0 1.681 10 92.4 49.469 10 91.0 25.151

12% 10 98.0 0.546 10 93.0 0.910 10 93.1 1.520 10 91.5 3.279
Table 1: Aggregate results for different percentages of edits on the edges (in the
columns) and frozen nodes (in the rows). #s represents the number of runs finished
within the timeout of 600 seconds, for a total of 10; Ovlp and T ime represent, respec-
tively, the overlap — percentage of facts the learned hypothesis that belongs to the
original model — and learning time (considering only the runs that finish within the
timeout).

same time, we assess the effect of removing some elements from the search space,
by adding a number of facts with the predicate frozen in ΠH , ranging from 0% to
12% of the model’s nodes. In this setting, including negative examples (through
ILASP’s #neg qualifier) caused timeouts over all instances. Thus, we resorted
to an alternative (but equivalent [23]) representation of negative examples (cfr.
Section 3.4), which improved the performance of our task. Table 1 summarizes
the results obtained with the revisions by running 10 times each setting. The
column overlap in Table 1 quantifies how far the repaired Petri net is from
the original model (as a percentage of common facts). We can conclude that,
on average, ILASP provides an optimal repair with an overlap exceeding 80%
within a few minutes for medium-sized Petri nets. Moreover, in general, even
removing a small amount of nodes from the search space produces a noticeable
speed-up in finding solutions.

5 Conclusions

In this paper, we introduced an ILP-based approach to repair Petri net process
models using ILASP. Our approach allows users to define edit operations (as
logic programs), can be easily extended to handle noisy examples and to sup-
port different firing semantics. Experiments confirm this is a feasible approach
for medium-sized models and models where domain knowledge is available. Our
ASP-based approach makes it easy to seamlessly support many interesting fea-
tures. For example, users can choose which parts of the input model should be
kept as-is (e.g., unaffected by edit operations), as well as define constraints on
the underlying bipartite graph topology of the Petri net (e.g., force the repaired
model to be a WF-net, or having at most n outgoing arcs). Another interest-
ing aspect, assuming a fixed set of edit operations, is that ILASP can process
examples incrementally and asynchronously (making use of caches to store in-
termediate optimal solutions). This makes our approach a good basis for an
interactive and (counter-)example-driven process model repair tool [7].
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