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Abstract. Ranking functions play a crucial role in supporting decision-
making processes across various critical domains. Given their widespread
use, coupled with the fact that these functions are often directly learned
from data, it is becoming more and more important to provide expla-
nations that make the underlying models more transparent. In this pa-
per, we propose the first formal approach to explain ranking functions.
Our approach is model-agnostic, requiring only black-box access to the
ranking function. We study the formal properties of this new approach,
including an analysis of the complexity of computing an explanation. To
demonstrate its feasibility, we implement our approach and conduct an
experimental evaluation using as a case study a neural network model
for predicting breast cancer recurrence.
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1 Introduction

Ranking is a fundamental task in many decision-making processes, such as job
recruitment, college admissions, and loan approval [57]. A critical domain is
healthcare scheduling, where risk scores help prioritise hospital operations ac-
cording to the urgency and severity of patient conditions. Given the significant
impact that rankings have on our lives, it is therefore essential to provide clear
explanations that ensure transparency, understanding, and trust. This necessity
is even more pressing if we consider that such rankings are increasingly often de-
termined by machine learning algorithms. Despite this, the problem of explaining
ranking functions has often been overlooked in eXplainable AI (XAI) research,
which has mainly focused on classification and regression tasks [20]. Driven by
fairness concerns in machine learning, some studies have started to tackle this
gap [55,18,45]. Nevertheless, these works only rely on heuristic methods, such
as approximate Shapley values [50,36], which can sometimes produce misleading
results for human decision-makers [23].



Formal XAI (FXAI) [38,17] offers a promising alternative to heuristic meth-
ods by grounding explanations in logical definitions that enhance their inter-
pretability. However, this research line has so far only considered classification
and regression [39,6]. A naive approach to applying FXAI to ranking functions
involves reducing the ranking task to binary classification. Specifically, one can
construct a binary classifier that outputs 1 if and only if the ranking holds.
Explaining a ranking then amounts to explaining why the classifier outputs 1.
This construction was outlined by Labreuche [33], who, however, regarded it as
impractical. This is because the classifier takes as input the concatenation of
the vectors in the ranking, which substantially increases the dimensionality of
the feature space. This higher dimensionality, in turn, negatively affects both
the time needed to compute the explanations and their overall quality. Further-
more, this approach overlooks the fact that the new feature space is essentially
composed of duplicates of the same features, once for each vector in the ranking.

We address the issues of previous work by introducing the first formal defini-
tions for explanations of ranking functions. These definitions allow a feature of a
vector to be part of an explanation if and only if the corresponding features in all
the other vectors are also included. This results in a more natural definition, as
explanations are directly defined within the original feature space. Furthermore,
the reduced number of features involved makes the computation of these ex-
planations practically feasible. We then investigate the formal properties of the
proposed explanations and establish several results that support our framework,
including the monotonicity of (weak) explanations. This key property allows us
to cast the problem of computing an explanation of a ranking as an instance of
the Minimal Set over a Monotone Predicate problem [41], which we solve using
a deletion-based algorithm, akin to computing Minimal Unsatisfiable Subsets
in Boolean Satisfiability [37]. Yet, our approach is model-agnostic, enabling its
application to black-box models, whether large-scale or proprietary. We discuss
the complexity of the algorithm, highlighting its greater efficiency compared to
the naive approach. Finally, we provide an implementation of the approach and
conduct an experimental evaluation based on the following case study, which
serves as a proof of concept.

Case Study. We assume a neural network model f that estimates the probability
f(x) ∈ R of a patient x experiencing breast cancer recurrence within five years
after surgery. These probabilities induce a priority ranking over patients, which
can be used, for instance, to schedule medical appointments. Each patient profile
is represented as a vector x of categorical features. While more features are
considered in the experiments, we focus here on three illustrative ones: age (the
patient’s age group), tumor-size (the size of the tumour), and deg-malig (the
degree of malignancy), with domain sizes of six, eleven, and three, respectively.
For example, a patient profile v = (3, 8, 2) corresponds to an individual aged
between 50–59 years (category 3), with a tumour size of 45–49 mm (category 8),
and a malignancy degree of 2. Our goal is then to explain the ranking produced
by the neural network over a given group of patients by isolating a set of features
that alone account for the ranking.



The remainder of the paper is structured as follows. Section 2 provides the
necessary background on formal explainability for classifiers and order theory,
including an introduction to ranking functions. Section 3 defines (weak) abduc-
tive explanations for rankings and analyses their properties. Section 4 details
an algorithm for computing these explanations and examines its computational
complexity. Section 5 describes our case study and the experiments conducted.
Section 6 reviews relevant literature. Finally, Section 7 concludes the paper with
possible directions for future research.

2 Background

This section reviews key definitions from Formal Explainability [38] and Order
Theory [48]. For a comprehensive treatment, please refer to the cited sources.

2.1 Formal Explanations of Classifiers

Let F = {1, . . . ,m} denote a feature set, with each feature i ∈ F having an
associated domain Di. These domains collectively define the feature space F =
D1 × · · · × Dm. The points x = (x1, . . . , xm) ∈ F in the feature space are also
referred to as feature vectors, or simply vectors.

We say that two vectors x,v ∈ F, agree on features S ⊆ F , denoted x ∼S v,
if ∀i ∈ S, xi = vi. That is, when projected into the subspace defined by S,
the two vectors are indistinguishable. Note that the agreement relation ∼S is
trivially an equivalence relation on F. We also define

[v]S := [v]∼S = {x ∈ F | x ∼S v}

as the equivalence class of v under ∼S , consisting of all points x that agree with
v on S.

Let K = {c1, . . . , cK} be a set of classes, and let κ : F → K be a classifier.

Definition 1 (Weak Abductive Explanation (WeakAXp)).
A set S ⊆ F of features is a weak abductive explanation (or WeakAXp for

short) for the explanation problem (κ;v), if it holds that:

∀x ∈ [v]S , κ(x) = κ(v) (1)

In other words, a WeakAXp is a set of features such that any vector x that
agrees with v on those features is mapped to the same class of v. We also write
WeakAXp(S) to denote that S is a WeakAXp, omitting the dependence on the
explanation problem to simplify the notation.

Definition 2 (Abductive Explanation (AXp)). A set S ⊆ F is an abduc-
tive explanation (or AXp) for the explanation problem (κ;v) if S is a subset-
minimal WeakAXp, that is,

WeakAXp(S) ∧ ∀S ′ ⊊ S,¬WeakAXp(S ′) (2)

AXps are also known as PI-explanations [51], as they correspond to the prime
implicants of the classification κ(v), or more precisely, the prime implicants of
formula (1) when interpreted as a Boolean function over the features F .



2.2 Order Theory

In what follows, let S be a finite set. A preorder ⪯ on S is a binary relation on
S that is both reflexive and transitive. A preorder is said to be total if it is also
strongly connected; that is, if any two elements are comparable. A total preorder
is also referred to as a ranking. Rankings are commonly known as preferences in
microeconomic theory [9], where they serve as models for consumer behaviour.
If a ranking is also antisymmetric—thus forming a proper order—it is called a
linear order. A preorder ⪯i on S induces an equivalence relation ∼i on S, defined
by a ∼i b ⇐⇒ a ⪯i b ∧ b ⪯i a. Given two rankings ⪯1,⪯2, the ranking ⪯1

is finer than ⪯2 if ⪯1⊆⪯2 or, equivalently, ∼1⊆∼2. Rankings are more general
than linear orders in that they allow for ties, with elements being tied if they
belong to the same equivalence class.

A ranking function, or ranker, (also known as utility function in microeco-
nomic theory) on S is a function f : S → R. A ranking function f on S induces
a ranking ⪯f on S, by defining a ⪯f b ⇐⇒ f(a) ≤ f(b). Conversely, given a
ranking ⪯ on S, there exists a ranking function f : S → R such that ⪯ coincides
with the ranking induced by f , i.e., ⪯=⪯f . Consequently, the terms ranking
and ranking function can be used interchangeably. We also blur the distinction
between a ranking ⪯ and the rankings ⪯↾S′ obtained by restricting ⪯ to S′ ⊆ S.
Without loss of generality, one can assume the range of f to be an initial segment
{1, . . . ,K} of N.

It is worth noting that if (K,⪯K) is linearly ordered, a classifier κ : F → K
acts as a ranker on F, inducing the ranking ⪯κ defined by

x ⪯κ x′ ⇐⇒ κ(x) ⪯K κ(x′) (3)

3 Formal Explanations of Rankers

Let F = D1×. . .×Dm be a feature space, and let f : F → R be a ranking function
on F. Given two feature vectors v,v′ ∈ F, such that v ⪯f v′, i.e., f(v) ≤ f(v′),
we address the question: why is v′ ranked at least as highly as v? We indicate
with (f ;v,v′) this explanation problem.

Definition 3 (Weak Abductive Explanation (WeakAXp)). Let S ⊆ F be
a set of features. We say that S is a Weak Abductive Explanation (or WeakAXp
for short) for the explanation problem (f ;v,v′) if

∀ (x,x′) ∈ [v]S × [v′]S , x ⪯f x′ (4)

In other words, a WeakAXp is a set S of features such that, for each pair
x,x′ ∈ F of vectors such that x ∼S v and x′ ∼S v′, the ranking x ⪯f x′ is
preserved. We also write WeakAXp(S) to denote that S is a WeakAXp.

The following theorem establishes the monotonicity of WeakAXps for rankers
and is analogous to the corresponding result for classifiers [38].

Theorem 1 (Monotonicity of WeakAXps). If S is a WeakAXp and S ⊆ S ′′,
then S ′′ is also a WeakAXp.



In practice, one can consider different rankings that vary in how finely they
distinguish between alternatives. Such differences often arise from introducing
tie-breaking criteria to resolve some or all ties, resulting in finer rankings derived
from coarser ones. The following theorem establishes a relationship between the
WeakAXps of rankers with different levels of granularity.

Theorem 2. Let ⪯1 and ⪯2 be rankings on F such that ⪯1 is finer than ⪯2,
i.e., ⪯1⊆⪯2. Then every WeakAXp of ⪯1 is also a WeakAXp of ⪯2.

We now proceed to define abductive explanations.

Definition 4 (Abductive Explanation (AXp)). A set S ⊆ F is an abduc-
tive explanation (AXp) for the explanation problem (f ;v,v′) if S is a subset-
minimal WeakAXp, that is,

WeakAXp(S) ∧ ∀S ′ ⊊ S,¬WeakAXp(S ′) (5)

Observe that formula (5) is formally analogous to formula (2) for classifiers,
i.e., they are syntactically equivalent. However, it is important to note that we
have redefined the semantics of predicate WeakAXp in the context of rankings.
Note also that, by Theorem 1, determining whether S is an AXp requires check-
ing only the |S| maximal proper subsets S ′ = S \ {i} with i ∈ S, rather than all
2|S| − 1 proper subsets.

The following theorem relates WeakAXps of classifiers and rankers.

Theorem 3. Let k : F → K be a classifier, with K linearly ordered, and let
v,v′ ∈ F be two point such that v ⪯κ v′. Then, if S is a WeakAXp for both the
explanations problems (κ;v) and (κ;v′), then S is a WeakAXp also for (κ;v,v′).

This follows directly from the fact that the classes of x ∈ [v]S and x′ ∈ [v′]S
are fixed. The converse does not necessarily hold. In fact, formula (4) allows their
classes to vary freely, as long as every x′ is ranked at least as highly as every x.

We began our analysis by addressing the question of why v ⪯f v′. In fact,
formula (4) can be easily adapted to the case v(1) ⪯f . . . ⪯f v(n). Finally,
although our focus has been on AXps, contrastive explanations [26] could be
adapted to the ranking setting in a similar manner.

3.1 On the Need for FXAI for Rankers

One could be tempted to explain a ranking function f by reducing such a problem
to classification. One can, in fact, consider the binary classifier κf : F2 → {0, 1}
defined by

κf (x,x
′) =

{
1, if x ⪯f x′,

0, otherwise.
(6)

Explaining why v ⪯f v′, then reduces to explain why κf evaluate to 1 on the
vector (v,v′) of the feature space F2. This approach, which we term the naive
approach has some shortcomings. Indeed, it differs from ours in that it treats the



i-th component of v independently from the i-th component of v′, resulting (i) in
explanations defined over the new feature set F∪F ′ obtained by adding a primed
copy for each feature, and (ii) a consequently higher complexity for computing
such explanations. Note also that the requirement xi = vi ∧ x′

i = v′i for each
i ∈ S, cannot be reproduced using domain constraints [19]. This is because
computing an AXp involves considering a different set S at each step, which
results in varying constraints on x and x′. On the contrary, domain constraints
are fixed over the feature space.

It is also useful to compare our work with approaches for explaining regression
models f : F → R, such as neural networks [54,28] and regression trees [6,8].
These methods explain a prediction f(v) by treating all points within a circular
neighbourhood of f(v)—with radius specified by a user parameter—as if they
were equal to that value. In contrast, by considering the ranking induced by
f rather than the exact values, our approach can handle real-valued functions
without any approximation or the need for additional parameters.

3.2 On the Concept of Best Explanations

Explanation problems can admit multiple AXps, raising the question of which
AXp to prefer. A natural choice is to favor smaller AXps, ideally those that are
cardinality-minimal. However, computing cardinality-minimal explanations can
be computationally intensive [27]. Moreover, even cardinality-minimal explana-
tions may not be unique.

To address this, we define a score function score : 2F → R by posing

score(S) = min
(x,x′)∈[v]S×[v′]S

(f(x′)− f(x)). (7)

A set S is then a WeakAXp if and only if score(S) ≥ 0. We define a preference
relation ⪯ on 2F by posing

S1 ⪯ S2 iff score(S1) ≤ score(S2).

This preference relation can then serve as a tie-breaking criterion among ex-
planations of the same size. The concept of score is particularly meaningful when
f carries significance beyond mere ranking, a common situation as demonstrated
in our case study, where the ranking is based on the probabilities of breast can-
cer recurrence. Note also that our preference relation is defined directly by the
explanation problem and therefore forms a more objective basis for identifying
the best explanations, as opposed to approaches requiring the incorporation of
formal models of the explainee [5].

4 Algorithms

In this section, we start by introducing a model-agnostic algorithm for verifying
whether a set S ⊆ F is a WeakAXp. We then combine it with a deletion-based



Algorithm 1: Verify WeakAXp.
Input: Ranker f , points v1, v2, candidate set S, feature space F, cache memo
Output: WeakAXp(S)

1 Function GenerateVectors(v,S,F):
2 foreach i ∈ S do
3 Di ← {vi};
4 return

∏m
i=1 Di // as an iterator

5 Function CachedPredict(x,memo):
6 if x /∈ memo then
7 memo[x]← f(x);

8 return memo[x]

9 foreach x1 ∈ GenerateVectors(v1,S,F) do
10 p1 ← CachedPredict(x1,memo);
11 foreach x2 ∈ GenerateVectors(v2,S,F) do
12 if p1 > CachedPredict(x2,memo) then
13 return false;

14 return true;

search strategy in order to compute an AXp. Our implementation is optimised
to minimise redundant calls to both the ranker and the verification procedure.
While the definitions in the previous section require no assumptions about the
domains Di, in this section we assume them to be finite.

4.1 Verification of a WeakAXp

We now describe Algorithm 1 for verifying whether a set S ⊆ F is a WeakAXp
for the explanation problem (f,v,v′). Such algorithm works by searching for a
counterexample (x,x′) ∈ [v]S × [v′]S to the claim of WeakAXp(S) being true
(lines 9–13). If no such pair is encountered, then S is certified as a WeakAXp
(line 14). The vectors x are generated (lines 1-4) by fixing xi = vi for each i ∈ S
(lines 2-3), while letting xj varying freely within the domain Dj for j ∈ F \ S
(analogously for x′). This implies that the number of vectors grows exponentially
with |F \S|, rather than |F|, making verification particularly efficient for large S.
Additionally, vectors are generated on-the-fly via an iterator (line 4), eliminating
the need to construct the equivalence class [v]S . Finally, we apply memoisation
(lines 5-8) to cache predictions and avoid redundant computation, including
across repeated invocations of the algorithm.

Theorem 4. Let d = maxi∈F |Di|. Algorithm 1 for verifying a WeakAXp S ⊆ F
containing k of the m features, requires at most 2dm−k calls to the function f .

It is worth mentioning that, while Algorithm 1 systematically explores the
entire feature space to guarantee correctness, its model-agnostic nature makes



Fig. 1. Hasse diagram of the search space
for m = 3 features. Dashed lines indicate
child nodes skipped during traversal.
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Algorithm 2: Deletion-based
Computation of an AXp.

Input: S ⊆ F
Output: AXp S ′ ⊆ S or None

1 if not WeakAXp(S) then
2 return None

3 S ′ ← S
4 for i ∈ S do
5 if WeakAXp(S ′ \ {i}) then
6 S ′ ← S ′ \ {i}

7 return S ′

it naturally compatible with heuristic strategies such as random sampling to
approximate the verification process—following an approach similar in spirit to
that used in many popular heuristic XAI techniques [47,46,36].

4.2 Computing an AXp

The monotonicity of WeakAXps, as established by Theorem 1, enables us to
reformulate the problem of computing an AXp as an instance of the Minimal
Set over a Monotone Predicate (MSMP) problem [41], which can be efficiently
solved using the deletion-based approach presented in Algorithm 2. The basic
idea is as follows. Given a WeakAXp S, the algorithm iteratively attempts to
refine it by deleting one element at a time in order to find a proper subset that
is still a WeakAXp. If such a deletion is possible, the algorithm proceeds with
the resulting subset. This process repeats until no single element can be removed
without losing the WeakAXp property, at which point the algorithm concludes
that the subset is an AXp and returns it. Note that an AXp S ′ ⊆ S exists
if and only if S is a WeakAXp. Therefore, the algorithm begins by checking
this condition, returning None otherwise. Note also that the feature set F is
a WeakAXp, since we assume v ⪯f v′, and can thus be used as the starting
point of the search. This search can be viewed as a traversal of the lattice of
subsets of F , ordered by set inclusion. Figure 1 shows the Hasse diagram of
this lattice for m = 3 features. Note how the deletion-based algorithm leverages
monotonicity by testing only the maximal proper subsets. In addition, it avoids
testing all such subsets by excluding the subsets S ′ \ {i}, for those i ∈ S that
have already been looped over. In fact, these subsets are contained in previously
visited sets that were not WeakAXps and, again due to monotonicity, cannot
be WeakAXps themselves. For example—referring to Figure 1 and assuming, for
illustrative purposes, the lattice is traversed by selecting features i in increasing
order—if the algorithm reaches {1, 3}, it can infer that {3} is not a WeakAXp



and can therefore be skipped. This is illustrated in the figure by a dashed line.
Our implementation of Algorithm 2 selects features uniformly at random to
avoid biasing the returned AXps toward certain features. The algorithm returns
the first AXp encountered during the traversal, not necessarily a cardinality-
minimal one. However, it is worth noting that the AXps returned tend to be
small in practice, as there are more paths leading to a smaller AXp than to
a larger one. Also, one could run the algorithm multiple times to try to find
smaller AXps. Alternatively, one could modify the algorithm to continue beyond
the first AXp found.

Finally, to contextualise the efficiency of our algorithm, consider again a
ranking v(1) ⪯f . . . ⪯f v(n) between n vectors. While Algorithm 2 has a constant
query complexity with respect to n, the naive approach scales linearly. This
clearly demonstrates the computational advantage of our approach compared to
the naive one.

5 Case Study

The experiments were carried out using Google Colab with no hardware accelera-
tion. The code was written in Python using TensorFlow/Keras as the deep learn-
ing framework and is available at https://github.com/fracchiariello/jelia2025.

5.1 Experimental Setup

Dataset. We use the Breast Cancer dataset from the UCI Machine Learning
Repository [59], which contains real-world data about breast cancer recurrence
within five years after surgery. The dataset consists of 286 instances, each with
9 categorical features and assigned to one of 2 classes. Of these instances, 201
exhibit no cancer recurrence, whereas 85 indicate its occurrence, corresponding
to a recurrence rate of around 30%. Table 1 lists the feature names along with
the sizes of their corresponding domains.

Problem formulation. Predicting the recurrence of breast cancer is a binary clas-
sification problem. We address it via regression, by training a neural network to
predict the probability of recurrence. These probabilities then define the desired
ranking over the patients. This corresponds to a pointwise approach in Learning
to Rank terminology [35]. Note that one could have chosen to predict the class
and then consider the classifier-induced ranking, as defined in (3). However, we
prefer to work with probabilities since they are more informative, as formalised
by Theorem 2, enabling us to distinguish between patients within the same class.

Dataset preparation. We denote cancer recurrence with 1 and its absence with 0.
To enable the neural network to handle categorical variables, we one-hot encode
them. This results in a 43-dimensional feature space, representing 299376 distinct
possible patients. We then split the dataset, allocating 80% for training and 20%
for testing.



Table 1. Features and domains for
the Breast Cancer dataset.

Feature Name |Di|
0 age 6
1 menopause 3
2 tumor-size 11
3 inv-nodes 7
4 node-caps 3
5 deg-malig 3
6 breast 2
7 breast-quad 6
8 irradiat 2

Table 2. Summary of the Keras model.

Layer type Shape Param #
Dense (ReLU) (43, 64) 2816
Dense (ReLU) (64, 32) 2080
Dense (sigmoid) (32, 1) 33
Trainable params 4929
Optimizer params 9860
Total params 14789

Model Architecture. We consider a feedforward neural network with 3 dense
layers, as shown in Table 2. The ReLU activation function is applied to the first
two layers, while the output layer uses the sigmoid function, ensuring the output
stays within the (0,1) range, therefore representing a probability.

Training. We train the model using the Adam optimiser and binary cross-entropy
as the loss function. The trained model achieves an accuracy of 72% and an F1

score of 53%. In comparison, a baseline model that always predicts 0 (the a
priori most probable class) achieves an accuracy of 64% but an F1 score of
0. It is important to note that the dataset is incomplete, meaning the available
features do not allow for effective discrimination between the classes. Our results
align with the performances reported in previous studies [42,14]. Moreover, our
primary objective is to explain the ranking induced by the model rather than
optimising its performance on the machine learning task.

5.2 Experiments

For the first experiment, we randomly sample the feature space to select 1000
pairs of feature vectors v,v′, ordering each pair such that v ⪯f v′ to ensure
the existence of AXps, with f corresponding to our neural network model. Note
that the search for AXps is performed in the original feature space, as shown in
Table 1, rather than in the 43-dimensional feature space of the neural network,
with vectors one-hot encoded before being input into the network for processing.
Table 3 reports the time required to compute the AXps. We observe that the
average time increases as the size of the returned explanation decreases, consis-
tently with Theorem 4. It is also worth noting how the support (i.e., the number
of explanations for each size) varies. Specifically, the largest number of expla-
nations corresponds to size 7, and this number gradually decreases as we move
away from it. The column about the standard deviation shows that the execu-
tion time tends to vary considerably, even for explanations of the same size. This
variability is expected, as execution time depends on several factors, including
the specific features in the AXps, the sizes of their corresponding domains, the



Table 3. Execution Time for computing AXps, ordered by their size.

Exp. Size Avg Time (s) Std Dev (s) Support
9 2.38 0.47 49
8 5.75 3.87 236
7 14.51 12.45 393
6 37.03 36.02 259
5 95.64 70.05 62
4 314.75 0.00 1

Overall 23.01 35.88 1000

Table 4. Feature Occurrences in the AXps.

Feat. 0 1 2 3 4 5 6 7 8
Occur. 881 715 957 764 847 727 572 913 572

size of intermediate sets encountered during lattice traversal, and the time re-
quired to determine whether these sets constitute a WeakAXp. We also report in
Table 4 the number of occurrences of each feature across the 1000 AXps. In this
regard, it is important to recall that our implementation of Algorithm 2 selects
features uniformly at random, thereby avoiding skew in the count toward any
particular feature. Interestingly, the size of the tumour (tumor-size, feature 2)
emerges as the most common feature, appearing in 957 of the 1000 AXps.

So far, we have examined how AXps change when varying the pairs (v,v′),
gaining deeper insights into the overall structure of the feature space. We now
shift our focus to analyzing the different AXps generated for a specific pair of
patients, selected from the test set and reported in Table 6. For patient v′,
cancer recurrence was observed, whereas for v, it was not. The neural network
f correctly classifies these cases, assigning prediction scores f(v) = 0.08 and
f(v′) = 0.97. To generate explanations, we ran Algorithm 2 ten times: six times
producing explanations of size 7 and four times of size 6, with the execution
times reported in Table 5. Table 6 lists the solutions of the smaller size (with
S1 returned twice). Given the relatively small size of the feature space, it is fea-
sible to exhaustively verify that these solutions are indeed cardinality-minimal.
Notably, all explanations agree on features 0, 2, 4, 5, and 8, differing only in
the final selected feature. This brings us to the question of which explanation to
prefer. To address this, we refer to the definition of the score as introduced in
Equation (7). The computed scores are: S1 = 0.305, S2 = 0.002, and S3 = 0.292,
so that S2 ≺ S3 ≺ S1. These scores can be calculated concurrently with the ver-
ification of WeakAXps by modifying Algorithm 1 to track the minimum value
of f(x′)−f(x) encountered. These findings not only help prioritise explanations
but also suggest an implicit ranking of features based on both their occurrences
across AXps and the relative scores of the explanations in which they appear:
1 ≺f 6 ≺f 7 ≺f 3 ≺f 0 ∼f 2 ∼f 4 ∼f 5 ∼f 8.



Table 5. Execution time for comput-
ing different AXps for the same expla-
nation problem.

Exp. Size Avg Time (s) Support
7 24.03 6
6 65.24 4

Overall 40.51 10

Table 6. Smallest AXps found.

F 0 1 2 3 4 5 6 7 8
v 2 2 3 0 1 1 1 3 0
v′ 4 0 3 3 2 2 0 2 1
S1 1 0 1 1 1 1 0 0 1
S2 1 0 1 0 1 1 1 0 1
S3 1 0 1 0 1 1 0 1 1

6 Related Work

FXAI has received significant attention in recent years [38,17], with approaches
ranging from knowledge compilation techniques [51,52] to the use of reasoning
engines (e.g., SAT, SMT or ILP solvers) [27,43]. Research has explored vari-
ous dimensions, including enumeration of explanations [26], and explainability
queries [7,4,22]. In addition, different types of explanations have been proposed,
such as probabilistic explanations [53,3,31] and feature importance scores [34].
Techniques to efficiently navigate the feature space under constraints have also
been examined [19,56,16]. Various studies focus on models with specific prop-
erties, such as monotonic classifiers [40,24]. Other research targets particular
classes, such as decision trees [29,30,22] and decision lists [25], to develop prac-
tically efficient algorithms. The main challenge of formal explainability remains
its ability to scale to more complex models. However, recent advancements have
led to significant improvements in this area [54,28].

The problem of explaining preferences over a combinatorial structure was
first studied in the domain of multi-criteria decision-making [32]. [33], for ex-
ample, considers explanations for weights-based decision models. Ranking func-
tions were then studied in [55], where the authors quantify the importance of
each feature in a score-based ranker and consider other measures about stability
and diversity of the ranking, useful for fairness considerations [57]. [18] proposes
participation metrics to explain monotonic ranking functions, quantifying fea-
ture importance based on the analysis of the functions themself. [1] propose a
framework to explain competitive rankings based on the analysis of the local
impact of each feature to quantify its importance. [21] proposed an approach to
explain pairwise comparisons based on Shapley values. Later [45] proposed to
use Shapley values to explain score-based rankers, rather than learned pairwise
comparisons. [49] uses a greedy algorithm based on Shapley values to compute
counterfactual explanations for an item to reach a desired rank position, while
keeping all other items fixed. Note how this is a simpler problem than the one
we consider here, where we allow the features of all the items to vary.

Related research areas that consider rankings include information retrieval
and recommender systems [58,2,13]. However, these studies differ considerably
from the aforementioned works and the present paper, as they focus on ranking
w.r.t. a given query usually expressed in natural language.



Explaining preferences has received increasing attention in Computational
Social Choice to justify election outcomes [10,11,44]. However, these works typi-
cally represent candidates as atomic objects, with explanations referring to voter
preferences or voting rules, rather than on specific features of the candidates.
Interestingly, FXAI was recently applied in this context [15].

7 Conclusion

In this paper, we introduced the first formal definitions of explanations for rank-
ing functions. Although applying FXAI to rankings has been considered straight-
forward through a reduction to classification [33], such a reduction is computa-
tionally prohibitive, limiting both research and practical use of formal explain-
ability for rankings and preferences. By introducing definitions tailored specifi-
cally to ranking functions—resembling those for classifiers but not reducible to
them—we presented the first practically feasible approach to formal explainabil-
ity in the ranking setting, provided the number of features remains manageable.
Our formal approach is model-agnostic, relying on querying the system, and
scales linearly with the inference time of the model used to solve the specific
ranking problem. We established several key properties of these definitions, in-
cluding the monotonicity of WeakAXps, and demonstrated how a deletion-based
algorithm can efficiently compute AXps by leveraging this property. Recognising
that an explanation problem can admit multiple (cardinality-minimal) solutions,
we introduce a score-based criterion to serve as a tie-breaker among such solu-
tions. To the best of our knowledge, this is the first proposal in FXAI to introduce
a preference criterion over the explanations, beyond their size, that does not rely
on incorporating the preferences of the explainee. We implemented our approach
and tested it on a real-world use case: a neural network model trained to predict
breast cancer recurrence. Our experiments demonstrated the feasibility of the
approach and highlighted the connection to the theoretical results.

On a terminological note, while we prefer the generic terms ranking and rank-
ing functions, which also emphasise their connection to machine learning tasks,
these correspond respectively to preferences and utility functions over combina-
torial domains [12]. As such, the relevance of our work for AI extends beyond
machine learning to encompass autonomous agents and multi-agent systems.

This paper aimed at laying down the theoretical foundations for applying
FXAI to ranking functions. As a result, the challenge of efficiently computing
these explanations and scaling the approach to larger problems remains an open
question. Our model-agnostic approach enables the verification of explanations
for black-box ranking functions. However, it is worth exploring alternative formal
approaches that leverage logic-based representations of these functions, which
could yield improved performance for specific classes of models. Additionally,
investigating probabilistic approaches may help address the challenge posed by
large numbers of features. These avenues for future research could further en-
hance the applicability and efficiency of FXAI in explaining ranking functions.
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