
ASP-based Declarative Process Mining

Francesco Chiariello1, Fabrizio Maria Maggi2, Fabio Patrizi1

1 DIAG - Sapienza University of Rome, Italy
2 KRDB - Free University of Bozen-Bolzano, Italy

chiariello@diag.uniroma1.it, maggi@inf.unibz.it, patrizi@diag.uniroma1.it

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 1 / 34

Objective

To show how Answer Set Programming can solve problems from
Declarative Process Mining.

Three problems considered: Log Generation, Conformance Checking,
and Query Checking.

Encodings share a common part.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 2 / 34

Process Mining

Intersection of Business Process Management and Data Mining.

Getting insights into processes analyzing event logs.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 3 / 34

Process Mining Terminology

An event consists of an activity, a timestamp and (possibly) other
attributes.

A case (or trace) is an observed sequence of events.

An event log is a collection of cases.

A process model is a specification of properties of cases.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 4 / 34

Process Perspectives

Control-flow perspective focuses on activities.

Data-aware perspective focuses on attributes.

Time perspective focuses on timestamps.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 5 / 34

Problems

Log generation [Sky+18] is the problem of generating a log
compliant with a process model.

Conformance checking [BMS16] is the problem of checking whether
traces are compliant with a process model.

Query checking [Räi+14] is the problem of finding properties of a
process from the associated event log.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 6 / 34

Declarative Process Mining

Processes are set of constraints.

Formalism used are:

declare [APS09]
Linear Temporal Logic on finite traces (ltlf) [DV13]

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 7 / 34

declare

Template Meaning

Absence(a) Activity a never happens
Existence(a) Activity a happens at least 1 time
Response(a, b) If a happens, b happens afterwards

NotResponse(a, b) If a happens, b doesn’t happen afterwards
RespondedExistence(a, b) If a happens, b happens

AlternateResponse(a, b)
If a happens then b happens without

any a inbetween
Precedence(a, b) If b happens, then a happened before it

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 8 / 34

ltlf : Syntax

Given a set P of propositional symbols, the syntax is defined by the
following grammar:

φ ::= A | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

with A ∈ P.
Common abbreviations used are:

true, →, ∨
Fφ ≡ trueUφ
Gφ ≡ ¬F¬φ
φ1Wφ2 ≡ φ1Uφ2 ∨ Gφ1

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 9 / 34

ltlf : Semantics

Given a formula φ, a trace π = π1, π2, . . . , πlen(π) ∈ (2P)+, and a
time instant i , with 1 ≤ i ≤ len(π), the semantics is defined as
follows:

π, i |= A iff A ∈ πi ,
π, i |= ¬φ iff π, i ̸|= φ,
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2,
π, i |= Xφ if i < len(π) and π, i + 1 |= φ,
π, i |= φ1Uφ2 iff π, j |= φ2 for some j , with i ≤ j ≤ len(π), and
π, k |= φ1 for all k = i , . . . , j − 1.

A formula φ is true in π, and we write π |= φ, if π, 1 |= φ.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 10 / 34

declare and ltlf

Template ltlf Formula

Absence(a) ¬Fa
Existence(a) Fa
Response(a, b) G(a→ Fb)

NotResponse(a, b) G(a→ ¬Fb)
RespondedExistence(a, b) Fa→ Fb
AlternateResponse(a, b) G(a→ X(¬aUb))

Precedence(a, b) ¬bWa

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 11 / 34

ltlf and Automata

For each ltlf formula φ there exists a nfa Aφ that accepts exactly
the traces satisfying φ.

For example to φ = G(a→Fb) is associated

s0 s1

b ∨ ¬a
a ∧ ¬b

¬b

b

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 12 / 34

Framework

An activity is an expression of the form A(a1, . . . , anA), where A is the
activity name and each ai is an attribute name.

An event is an expression of the form e = A(v1, . . . , vnA), where vi is
a element of the set DA(ai) of possible values of ai .

A process trace is a finite sequence of events π = e1 · · · en.
An event log is a finite set of traces.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 13 / 34

ltlf with local conditions (or l-ltlf)

Given a finite set of activities Act, the formulas φ of l-ltlf over Act are
inductively defined as follows:

φ = true | A | a⊙ a′ | a⊙ v | ¬φ | φ ∧ φ | Xφ | φUφ,

where: a and a′ are attribute names from some activity in Act, v ∈ DA(a),
for some A ∈ Act, ⊙ is an operator from {<,≤,=,≥, >}, and A is an
activity name from Act.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 14 / 34

Automata Representation of l-ltlf formulas

For every l-ltlf formula φ there exists a finite-state automaton
(FSA) Aφ that accepts exactly the traces that satisfy φ (see [DV13]).

Such automata are standard FSA with transitions labelled by event
formulas (i.e. without temporal operators).

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 15 / 34

Example

The l-ltlf formula φ = G(a→Fb) can be extended as
φ′ = G((a ∧ n < 5)→Fb)

s0 s1

φ3

φ1

φ4

φ2

s0 s1

¬a
a

¬b

b
s0 s1

¬(a ∧ n < 5)

a ∧ n < 5
¬b

b

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 16 / 34

Approach

Convert specifications into automata.

Represent automata in ASP.

Represent traces in ASP.

Modeling how automata read trace.

Add generation and test rules.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 17 / 34

ASP for DPM: data

Predicates:

act(A): A is an activity.

has attr(A,N): activity A has attribute N.

val(N,V): a possible value of attribute N is V .

Activities a1(int, cat) and a2(), with int ∈ {1, . . . , 10} and
cat ∈ {c1, c2, c3} becomes:

act(a1). has attr(a1, int). has attr(a1, cat).

act(a2).

value(int, 1..10).

value(cat, c1). value(cat, c2). value(cat, c3).

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 18 / 34

ASP for DPM: traces

Predicates:

trace(A,T): activity A happens at time T .

has value(N,V ,T): attribute N has value V at time T .

Trace a2(), a1(2, c3), a2() becomes:

trace(a2, 1).

trace(a1, 2). has value(int, 2, 2). has value(cat, c3, 2).

trace(a2, 3).

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 19 / 34

ASP for DPM: automata

init(S): S is the initial state.

acc(S): S is an accepting state.

trans(S ,F ,S ′): there exists a transition from state S to state S ′

labeled with event formula F .

holds(F ,T): event formula F holds at time T .

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 20 / 34

Example

The ASP encoding of the formula φ = G(a→Fb) is given by:

s0 s1

¬a
a

¬b

b

init(s0).

acc(s0).

trans(s0, 1, s1).

holds(1,T)← trace(a,T).

trans(s1, 2, s0).

holds(2,T)← trace(b,T).

trans(s0, 3, s0).

holds(3,T)← not holds(1,T), time(T).

trans(s1, 4, s1).

holds(4,T)← trace(A,T),A ̸= b.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 21 / 34

Example (cont’d)

For the data-aware formula φ′ = G((a ∧ n < 5)→Fb) it is sufficient to
modify the rule for holds(1,T) as follows:

holds(1,T)← trace(a,T), has value(n,V ,T),V < 5.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 22 / 34

ASP for DPM: reading trace

Predicate state models execution of automaton on trace

state(S ,T): S is current state at time T .

and updated as

state(S , 0)← init(S).

state(S ′,T)← state(S ,T − 1), trans(S ,F ,S ′), holds(F ,T).

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 23 / 34

Log Generation

Problem: given an l-ltlf formula varphi and trace length t, generate a
trace of length t satisfying φ

Generate traces as follows

{trace(A,T) : activity(A)} = 1← time(T).

{has value(K ,V ,T) : value(K ,V)} = 1←
trace(A,T), has attribute(A,K).

Test traces as follows

sat ← state(S , t), accepting(S).

← not sat.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 24 / 34

Conformance Checking

It is given a set of traces.

Add the trace index i to predicate sat.

Check whether sat(i) holds.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 25 / 34

Query Checking

The following predicates are introduced

var(V): V is a variable.

assgnmt(V ,A): activity A is assigned to variable V .

The body of the rule for holds is modified by replacing trace(act,T) with
trace(A,T), assgnmt(v ,A), with v being the variable in place of activity
act.

Then for generating

{assgnmt(V ,A) : activity(A)} = 1← var(V).

and for testing we check that the formula is satisfied by the trace.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 26 / 34

Example

Consider formula φ = G((?A ∧ number < 5)→ Fb).

Rule for holds(1,T) is:

holds(1,T)← trace(A,T), assgnmt(varA,A), has value(n,V ,T),V < 5.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 27 / 34

Experiments: Log Generation

constr. → 3 5 7 10
Trace len ↓

10 35975 35786 36464 37688
15 50649 51534 54402 54749
20 69608 70342 73122 73222
25 85127 85598 87065 89210
30 101518 101882 106062 107520

10 595 614 622 654
15 876 894 904 956
20 1132 1155 1178 1250
25 1364 1413 1444 1543
30 1642 1701 1746 1874

Table: Time (in ms) for generating a log of 10000. Above: Results obtained with
MP-Declare Log Generator, a state-of-the-art tool. Below: our results.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 28 / 34

Experiments: Conformance Checking

Tool → ASP Declare Analyzer
Trace Len ↓

10 665 598
15 1100 805
20 1456 1092
25 2071 1273
30 2407 1337

Table

Time (in ms) for checking a log of 1000 traces against a model of 10
constraints.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 29 / 34

Experiments: Query Checking

Constraints → Existence Responded Response Chain Absence Not Resp. Not Resp. Not Chain
Trace len ↓ Existence Response Existence Response

10 521 736 534 503 566 783 602 385
15 704 1113 801 788 784 1180 879 606
20 1321 1675 1143 1128 1373 1821 1304 865
25 1397 3218 1528 1561 1562 2823 1807 1104
30 1674 2878 1824 1906 1905 2784 2028 1301

Table: Time (in ms) for checking different declare constraints (with both
activation and target activity, if any, unknown) against a log of 1000 traces

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 30 / 34

Results

Our approach

outperforms the SoA tool MP-Declare Log Generator [Sky+18]

shows results comparable wrt SoA tool Declare Analyzer [BMS16]

show the feasibility of data-aware Query checking

Note

more general specifications.

code not optimized.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 31 / 34

Conclusion

Provided

ASP encoding of data-aware Log Generation, Conformance Checking,
and Query Checking

Performance evaluation wrt state-of-the-art

Future work

add time-perspective (i.e. timestamp)

correlation condition

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 32 / 34

Bibliography I

[APS09] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg.
“Declarative workflows: Balancing between flexibility and
support”. In: Comput. Sci. Res. Dev. 23.2 (2009), pp. 99–113.

[BMS16] Andrea Burattin, Fabrizio Maria Maggi, and
Alessandro Sperduti. “Conformance checking based on
multi-perspective declarative process models”. In: Expert Syst.
Appl. 65 (2016).

[DV13] Giuseppe De Giacomo and Moshe Y. Vardi. “Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces”. In: Proc. of
the 23rd Int. Joint Conf. on Artificial Intelligence. IJCAI/AAAI,
2013.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 33 / 34

Bibliography II

[Räi+14] Margus Räim et al. “Log-Based Understanding of Business
Processes through Temporal Logic Query Checking”. In: On
the Move to Meaningful Internet Systems: OTM 2014
Conferences. 2014, pp. 75–92.

[Sky+18] Vasyl Skydanienko et al. “A Tool for Generating Event Logs
from Multi-Perspective Declare Models”. In: Proceedings of
the Dissertation Award, Demonstration, and Industrial Track
at BPM 2018. 2018.

Chiariello, Maggi, Patrizi ASP-based Declarative Process Mining 34 / 34

	Query checking
	References

