Declarative Process Specifications:

Reasoning and Mining Temporal Formulae

Francesco Chiariello

ANITI, IRIT, University of Toulouse
francesco.chiariello@irit.fr

1/30

Table of Contents

© Introduction

© Background
e PM
o LTL
e DPM

© Tasks

@ Logical Encoding

@ Log Generation and Conformance Checking
@ Process Discovery

@ Trace Alignment

@ Conclusion

2/30

Intro
e0

Table of Contents

© Introduction

3/30

Intro
o]]

Overview

e Introduction to Temporal Logics and Process Mining (PM)
@ Declarative Process Mining = Temporal Logics + PM

o Linear Temporal Logics (LTL) for Declarative Specifications
@ Tasks:

o Log Generation and Conformance Checking,
Trace Alignment,

Process Discovery,

Process Repair.

4/30

Background
[]

Table of Contents

© Background

5/30

Background

@000

Process Mining in a nutshell

Process mining analyzes event logs to discover, monitor, and
optimize processes by deriving or enhancing process models.

6/30

Background
0®e00

Process Models and Event Logs

Buy
ingredients
bi

add cheese
(c)
Q add tomato 0

(at)
add salami
(as)

Figure: Pizza Process

create base bake in oven eat pizza clean kitchen
(cb) (o) (ep) (ck)

end

@ A process trace is a sequence of activities from start to end.

@ An event log is a collection of traces.

7/30

Background
[e]e] Je]

Event Log Example

Case Activity Timestamp | Resource | Customer
pizza-56 | buy ingredients (bi) 18:10 Stefano | Valentina
pizza-57 | buy ingredients (bi) 18:12 Stefano Giulia
pizza-57 | create base (cb) 18:16 Mario Giulia
pizza-56 | create base (cb) 18:19 Mario | Valentina
pizza-57 | add tomato (at) 18:21 Mario Giulia
pizza-57 add cheese (ac) 18:27 Mario Giulia
pizza-56 | add cheese (ac) 18:34 Mario | Valentina
pizza-56 | add tomato (at) 18:44 Mario | Valentina
pizza-56 | add salami (as) 18:45 Mario | Valentina
pizza-56 | bake in oven (bo) 18:48 Stefano | Valentina
pizza-57 | add salami (as) 18:50 Mario Giulia

8/30

Background
[e]e]e]]

Process Mining Tasks

@ Conformance Checking: Verify whether the traces of a logs
are compliant with a process model.

o Log Generation: Generate event logs from a process model
(used for testing and analysis).

@ Trace Alignment: Modify traces to make them compliant
with the model.

@ Process Discovery: Generate process model from event logs.

@ Process Model Repair: Modify a process model to better
match observed event logs.

9/30

Background

900000

@ Linear Temporal Logic over process traces (LTL,) is a
formalism for specifying temporal properties of process.

@ It allows reasoning about sequences of activities.

e LTL, uses temporal operators like Next (X), Until (U),
Eventually (F), and Globally (G).

10/30

Background
(o] lelelele)

LTL,: Syntax

@ Given a set X of propositional symbols, the syntax is defined
by the following grammar

pu=al-p|p1Ap2| Xe|p1Up2

with a € ¥
@ Common abbreviations used are:
true, —, V
Fp = trueUyp
Gy =-F-p
X(p = ﬂXﬂgO
©1Wep2 = p1Upr V Gy

11/30

Background
[e]e] lelele)

Temporal Operators

mil Xp

O On0n000
i 1+1

i = p1Ups

O-@-0--O-C
i J

12/30

Background
[e]e]e] lele)

Temporal Operators (cont'd)

O OnOnOa®

O
)

13/30

Background
[e]e]ele] o)

LTL,: Semantics

o Given a formula ¢, a trace 7 = 71,72, . .., Mjen(r) € =, and
a time instant /, with 1 </ < en(r), the semantics is defined
as follows:

miEaiffa=mn;,

w0 e iff i e,

T E w1 A iff i =1 and w0 = o,

7,1 = X iff i < len(m) and 7,i + 1 |= ¢,

m, i = p1Ugs iff m,j = @2 for some j, with i < j < len(r),
and T,k |Epy forall k=1i,...j—1.

We write 7 |= ¢, and we say that 7 satisfies ¢, if 7,1 = .

14/30

Background
00000e

LTL, and Finite-state Automata

Given an LTL, formula ¢ over ¥ there exists a Finite-state
Automaton A, over ¥ such that A, accepts exactly the traces
that satisfy .

.

Formula: b, c
G(a—Fb) 3

Explanation: oe

For all time instants, if a oc-
curs, b must eventually follow.

.

15/30

Background
[le]e}

Declarative Process Specifications

@ Traditional approach:
e procedural model for the process,
e temporal logic for traces properties.
o Declarative approach: use temporal formulae as model:
@ A model is a set of temporal formulae,
o Admissible traces are the ones satisfying all the formulae.
e A declarative model specifies what properties a solution should
obey, rather than how traces should be routed to satisfy the
constraints.

o Declarative Process Mining considers declarative models.

16 /30

Background
(o] le}

Pros and Cons of Declarative Models

(a) A process (b) Imperative model (¢) Declarative specification

o Pros:

o Less prone to excluding traces that should be allowed.
o Cons:

e Difficult to model processes using temporal formulae.

17/30

Background
[efe]]

DECLARE Templates

Template LTL,
Init(a) a
Exactly?2(a) —aU(a A X(—aU(a A =X(Fa))))
Response(a, b) G(a—Fb)
RespondedExistence(a, b) Fa—Fb
AlternateResponse(a, b) G(a—X(—aUb))
Precedence(a, b) (—-b)Wa
ChainPrecedence(a, b) G(Xb—a) A —b
Choice(a, b) F(aV b)
ExclusiveChoice(a, b) F(aV b) A —=(FaAFb)
CoExistence(a, b) Fa< Fb

Table: Some DECLARE templates and corresponding LTL, formula.

18/30

Table of Contents

© Tasks

19/30

Logical Encoding

We want to show how to encode logically
@ process traces,
@ temporal formulae,

@ the corresponding semantics.

Trace Encoding

The trace aab can be encoded with the following facts:
trace(a,1).
trace(a,?2).
trace(b,3).

20/30

Logical Encoding (cont'd)

The formula Response(a, b) = G(a—Fb) can be encoded by its
corresponding automaton:

init(s_0).

acc(s_0).

trans(s_0,a,s_1). b, c a,c
trans(s_1,b,s_0). a
trans(s_0,b,s_0) . 06
trans(s_0,c,s_0).

trans(s_1,a,s_1).

trans(s_1,c,s_1).

21/30

Logical Encoding (cont'd)

Reading a trace

cur_state(S,0) :- init(S).

cur_state(S2,T) :- cur_state(S1,T-1),
trace(A,T),
trans(S1,A,S2).

A

Checking for satisfaction

last(T) :- trace(_,T), not trace(_,T+1).
sat :- cur_state(S,T), last(T), accepting(S).

.

Generate a trace

time(1..t).
{trace(A,T}:activity(A)} = 1 :- time(T).

22/30

Tasks
L]

Log Generation and Conformance Checking

@ Conformance Checking

o Problem: Given a process trace m and an LTL, formula ¢,
determine whether 7 = ¢ holds.

o Solution: Check if the formula holds by invoking a SAT solver
to verify whether sat is true.

o Log Generation

e Problem: Given an LTL, formula ¢, find a set of traces
such that 7 = ¢.
e Solution: invoke an allSAT solver to guess the traces.

23/30

Process Discovery

o Problem: Given an event log L, derive a formula ¢ such that
every trace in the log satisfies the formula, i.e.,

VreLl:mkE .

@ Solution: Use an allSAT solver to compute a
(language-minimal) formula/automaton that captures the
behaviour represented in L.

e Special Case (Declare Templates): Instead of deriving a
new formula, verify the conformance of predefined constraints
against the log (and eliminate any redundant constraints).

24/30

Trace Alignment

o Trace Alignment is the problem of aligning, with a minimal
number of modifications, a trace 7 with a formula ¢,
producing a new trace 7’ satisfying ¢

Given ¢ = G(a — Fb) and m = aba, the trace can be aligned by
removing the last occurrence of a producing 7’ = aba

25/30

Trace Alignment: Encoding

@ The problem can be encoded as cost-optimal planning.
@ The action allowed are:
e del: the removal of an activity,
e add: the insertion of an activity.
@ A special action sync, of cost null, is used.
@ The problem reduces to a text cursor moving from left to right

Example (cont'd)

Trace ' = aba is produced from trace m = aba as follows:

State: |aba
Action: sync
State: alba
Action: sync
State: abla
Action: del
State: abl

26/30

Trace Alignment: Encoding

@ The problem is represented using the Planning Domain
Definition Language (PDDL).

@ It can be solved using any standard Al planner that supports
cost actions.

(:action sync
:parameters (7tl - trace_state 7e - activity
?7t2 - trace_state)
:precondition (and (cur_state 7tl) (trace 7tl 7e 7t2))
:effect(and (not (cur_state 7t1)) (cur_state 7t2)
(forall (7s1 7s2 - automaton_state)
(when (and (cur_state ?s1)
(automaton 7s1 7e 7s2))
(and (not (cur_state 7s1))
(cur_state 7s2))))))

27/30

Trace Alignment (cont'd)

add and del

(:action add
:parameters (7e - activity)
:effect (and (increase (total-cost) 1)
(forall (?sl1 ?s2 - automaton_state)
(when (and (cur_state ?7sl)
(automaton 7sl1 7e 7s2))
(and (not (cur_state 7s1))
(cur_state 7s2))))))

(:action del
:parameters (7tl - trace_state 7e - activity
?7t2 - trace_state)
:precondition (and (cur_state 7tl) (trace 7tl 7e 7t2))
:effect(and (increase (total-cost) 1)
(not (cur_state 7t1)) (cur_state 7t2)))

28/30

Conclusion
e0

Table of Contents

@ Conclusion

29/30

Conclusion
oe

Conclusion and Future Work

@ Summary: We explored some key problems in Declarative
Process Mining:

o Log Generation, Conformance Checking, and Trace Alignment
(reasoning problems over event data).
e Process Discovery (mining/learning from event data).
@ Approach: Reduce these problems to combinatorial search
and optimization, and solve them efficiently using Automated
Reasoning (SAT solvers and Al Planners).

e Future Work: Learn/repair process models via local
perturbations.

30/30

	Introduction
	Background
	PM
	LTL
	DPM

	Tasks
	Logical Encoding
	Log Generation and Conformance Checking
	Process Discovery
	Trace Alignment

	Conclusion

