
Intro Background Tasks Conclusion

Declarative Process Specifications:
Reasoning and Mining Temporal Formulae

Francesco Chiariello

ANITI, IRIT, University of Toulouse
francesco.chiariello@irit.fr

1 / 30



Intro Background Tasks Conclusion

Table of Contents

1 Introduction

2 Background
PM
LTL
DPM

3 Tasks
Logical Encoding
Log Generation and Conformance Checking
Process Discovery
Trace Alignment

4 Conclusion

2 / 30



Intro Background Tasks Conclusion

Table of Contents

1 Introduction

2 Background
PM
LTL
DPM

3 Tasks
Logical Encoding
Log Generation and Conformance Checking
Process Discovery
Trace Alignment

4 Conclusion

3 / 30



Intro Background Tasks Conclusion

Overview

Introduction to Temporal Logics and Process Mining (PM)

Declarative Process Mining = Temporal Logics + PM

Linear Temporal Logics (LTL) for Declarative Specifications

Tasks:

Log Generation and Conformance Checking,
Trace Alignment,
Process Discovery,
Process Repair.
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Process Mining in a nutshell

Process mining analyzes event logs to discover, monitor, and
optimize processes by deriving or enhancing process models.
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Process Models and Event Logs

Figure: Pizza Process

A process trace is a sequence of activities from start to end.

An event log is a collection of traces.
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Event Log Example

Case Activity Timestamp Resource Customer

pizza-56 buy ingredients (bi) 18:10 Stefano Valentina
pizza-57 buy ingredients (bi) 18:12 Stefano Giulia
pizza-57 create base (cb) 18:16 Mario Giulia
pizza-56 create base (cb) 18:19 Mario Valentina
pizza-57 add tomato (at) 18:21 Mario Giulia
pizza-57 add cheese (ac) 18:27 Mario Giulia
pizza-56 add cheese (ac) 18:34 Mario Valentina
pizza-56 add tomato (at) 18:44 Mario Valentina
pizza-56 add salami (as) 18:45 Mario Valentina
pizza-56 bake in oven (bo) 18:48 Stefano Valentina
pizza-57 add salami (as) 18:50 Mario Giulia
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Process Mining Tasks

Conformance Checking: Verify whether the traces of a logs
are compliant with a process model.

Log Generation: Generate event logs from a process model
(used for testing and analysis).

Trace Alignment: Modify traces to make them compliant
with the model.

Process Discovery: Generate process model from event logs.

Process Model Repair: Modify a process model to better
match observed event logs.
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LTLp

Linear Temporal Logic over process traces (LTLp) is a
formalism for specifying temporal properties of process.

It allows reasoning about sequences of activities.

LTLp uses temporal operators like Next (X), Until (U),
Eventually (F), and Globally (G).
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LTLp: Syntax

Given a set Σ of propositional symbols, the syntax is defined
by the following grammar

φ ::= a | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

with a ∈ Σ.

Common abbreviations used are:

true, →, ∨
Fφ ≡ trueUφ
Gφ ≡ ¬F¬φ
X̃φ ≡ ¬X¬φ
φ1Wφ2 ≡ φ1Uφ2 ∨ Gφ1
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Temporal Operators
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Temporal Operators (cont’d)

13 / 30



Intro Background Tasks Conclusion

LTLp: Semantics

Given a formula φ, a trace π = π1, π2, . . . , πlen(π) ∈ Σ+, and
a time instant i , with 1 ≤ i ≤ len(π), the semantics is defined
as follows:

π, i |= a iff a = πi ,
π, i |= ¬φ iff π, i ̸|= ¬φ,
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2,
π, i |= Xφ iff i < len(π) and π, i + 1 |= φ,
π, i |= φ1Uφ2 iff π, j |= φ2 for some j , with i ≤ j ≤ len(π),
and π, k |= φ1 for all k = i , . . . , j − 1.

We write π |= φ, and we say that π satisfies φ, if π, 1 |= φ.
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LTLp and Finite-state Automata

Theorem

Given an LTLp formula φ over Σ there exists a Finite-state
Automaton Aφ over Σ such that Aφ accepts exactly the traces
that satisfy φ.

Example

Formula:
G(a→Fb)

Explanation:
For all time instants, if a oc-
curs, b must eventually follow.

s0 s1

b, c
a

a, c

b
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Declarative Process Specifications

Traditional approach:

procedural model for the process,
temporal logic for traces properties.

Declarative approach: use temporal formulae as model:

A model is a set of temporal formulae,
Admissible traces are the ones satisfying all the formulae.
A declarative model specifies what properties a solution should
obey, rather than how traces should be routed to satisfy the
constraints.

Declarative Process Mining considers declarative models.
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Pros and Cons of Declarative Models

Pros:
Less prone to excluding traces that should be allowed.

Cons:
Difficult to model processes using temporal formulae.
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declare Templates

Template LTLp
Init(a) a

Exactly2(a) ¬aU(a ∧ X(¬aU(a ∧ ¬X(Fa))))
Response(a, b) G(a→Fb)

RespondedExistence(a, b) Fa→Fb
AlternateResponse(a, b) G(a→X(¬aUb))

Precedence(a, b) (¬b)Wa
ChainPrecedence(a, b) G(Xb→a) ∧ ¬b

Choice(a, b) F(a ∨ b)
ExclusiveChoice(a, b) F(a ∨ b) ∧ ¬(Fa ∧ Fb)
CoExistence(a, b) Fa ↔ Fb

Table: Some declare templates and corresponding LTLp formula.
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Logical Encoding

We want to show how to encode logically

process traces,

temporal formulae,

the corresponding semantics.

Trace Encoding

The trace aab can be encoded with the following facts:

trace(a,1).

trace(a,2).

trace(b,3).
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Logical Encoding (cont’d)

Formula

The formula Response(a, b) = G(a→Fb) can be encoded by its
corresponding automaton:
init(s_0).

acc(s_0).

trans(s_0,a,s_1).

trans(s_1,b,s_0).

trans(s_0,b,s_0).

trans(s_0,c,s_0).

trans(s_1,a,s_1).

trans(s_1,c,s_1).

s0 s1

b, c
a

a, c

b
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Logical Encoding (cont’d)

Reading a trace

cur_state(S,0) :- init(S).

cur_state(S2,T) :- cur_state(S1,T-1),

trace(A,T),

trans(S1,A,S2).

Checking for satisfaction

last(T) :- trace(_,T), not trace(_,T+1).

sat :- cur_state(S,T), last(T), accepting(S).

Generate a trace

time(1..t).

{trace(A,T}:activity(A)} = 1 :- time(T).
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Log Generation and Conformance Checking

Conformance Checking
Problem: Given a process trace π and an LTLp formula φ,
determine whether π |= φ holds.
Solution: Check if the formula holds by invoking a SAT solver
to verify whether sat is true.

Log Generation
Problem: Given an LTLp formula φ, find a set of traces π
such that π |= φ.
Solution: invoke an allSAT solver to guess the traces.
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Process Discovery

Problem: Given an event log L, derive a formula φ such that
every trace in the log satisfies the formula, i.e.,
∀π ∈ L : π |= φ.

Solution: Use an allSAT solver to compute a
(language-minimal) formula/automaton that captures the
behaviour represented in L.
Special Case (Declare Templates): Instead of deriving a
new formula, verify the conformance of predefined constraints
against the log (and eliminate any redundant constraints).
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Trace Alignment

Trace Alignment is the problem of aligning, with a minimal
number of modifications, a trace π with a formula φ,
producing a new trace π′ satisfying φ

Example

Given φ = G(a → Fb) and π = aba, the trace can be aligned by
removing the last occurrence of a producing π′ = aba
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Trace Alignment: Encoding

The problem can be encoded as cost-optimal planning.
The action allowed are:

del: the removal of an activity,
add: the insertion of an activity.

A special action sync, of cost null, is used.
The problem reduces to a text cursor moving from left to right

Example (cont’d)

Trace π′ = aba is produced from trace π = aba as follows:

State: |aba

Action: sync

State: a|ba

Action: sync

State: ab|a

Action: del

State: ab|

s0 s1

b, c
a

a, c

b
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Trace Alignment: Encoding

The problem is represented using the Planning Domain
Definition Language (PDDL).

It can be solved using any standard AI planner that supports
cost actions.

sync

(:action sync

:parameters (?t1 - trace_state ?e - activity

?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (not (cur_state ?t1)) (cur_state ?t2)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))
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Trace Alignment (cont’d)

add and del

(:action add

:parameters (?e - activity)

:effect (and (increase (total-cost) 1)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

(:action del

:parameters (?t1 - trace_state ?e - activity

?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (increase (total-cost) 1)

(not (cur_state ?t1)) (cur_state ?t2)))
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Conclusion and Future Work

Summary: We explored some key problems in Declarative
Process Mining:

Log Generation, Conformance Checking, and Trace Alignment
(reasoning problems over event data).
Process Discovery (mining/learning from event data).

Approach: Reduce these problems to combinatorial search
and optimization, and solve them efficiently using Automated
Reasoning (SAT solvers and AI Planners).

Future Work: Learn/repair process models via local
perturbations.
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