
Intro Background Tasks Conclusion

Declarative Process Specifications:
Reasoning and Mining Temporal Formulae

Francesco Chiariello

ANITI, IRIT, University of Toulouse
francesco.chiariello@irit.fr

1 / 30

Intro Background Tasks Conclusion

Table of Contents

1 Introduction

2 Background
PM
LTL
DPM

3 Tasks
Logical Encoding
Log Generation and Conformance Checking
Process Discovery
Trace Alignment

4 Conclusion

2 / 30

Intro Background Tasks Conclusion

Table of Contents

1 Introduction

2 Background
PM
LTL
DPM

3 Tasks
Logical Encoding
Log Generation and Conformance Checking
Process Discovery
Trace Alignment

4 Conclusion

3 / 30

Intro Background Tasks Conclusion

Overview

Introduction to Temporal Logics and Process Mining (PM)

Declarative Process Mining = Temporal Logics + PM

Linear Temporal Logics (LTL) for Declarative Specifications

Tasks:

Log Generation and Conformance Checking,
Trace Alignment,
Process Discovery,
Process Repair.

4 / 30

Intro Background Tasks Conclusion

Table of Contents

1 Introduction

2 Background
PM
LTL
DPM

3 Tasks
Logical Encoding
Log Generation and Conformance Checking
Process Discovery
Trace Alignment

4 Conclusion

5 / 30

Intro Background Tasks Conclusion

Process Mining in a nutshell

Process mining analyzes event logs to discover, monitor, and
optimize processes by deriving or enhancing process models.

6 / 30

Intro Background Tasks Conclusion

Process Models and Event Logs

Figure: Pizza Process

A process trace is a sequence of activities from start to end.

An event log is a collection of traces.

7 / 30

Intro Background Tasks Conclusion

Event Log Example

Case Activity Timestamp Resource Customer

pizza-56 buy ingredients (bi) 18:10 Stefano Valentina
pizza-57 buy ingredients (bi) 18:12 Stefano Giulia
pizza-57 create base (cb) 18:16 Mario Giulia
pizza-56 create base (cb) 18:19 Mario Valentina
pizza-57 add tomato (at) 18:21 Mario Giulia
pizza-57 add cheese (ac) 18:27 Mario Giulia
pizza-56 add cheese (ac) 18:34 Mario Valentina
pizza-56 add tomato (at) 18:44 Mario Valentina
pizza-56 add salami (as) 18:45 Mario Valentina
pizza-56 bake in oven (bo) 18:48 Stefano Valentina
pizza-57 add salami (as) 18:50 Mario Giulia

8 / 30

Intro Background Tasks Conclusion

Process Mining Tasks

Conformance Checking: Verify whether the traces of a logs
are compliant with a process model.

Log Generation: Generate event logs from a process model
(used for testing and analysis).

Trace Alignment: Modify traces to make them compliant
with the model.

Process Discovery: Generate process model from event logs.

Process Model Repair: Modify a process model to better
match observed event logs.

9 / 30

Intro Background Tasks Conclusion

LTLp

Linear Temporal Logic over process traces (LTLp) is a
formalism for specifying temporal properties of process.

It allows reasoning about sequences of activities.

LTLp uses temporal operators like Next (X), Until (U),
Eventually (F), and Globally (G).

10 / 30

Intro Background Tasks Conclusion

LTLp: Syntax

Given a set Σ of propositional symbols, the syntax is defined
by the following grammar

φ ::= a | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

with a ∈ Σ.

Common abbreviations used are:

true, →, ∨
Fφ ≡ trueUφ
Gφ ≡ ¬F¬φ
X̃φ ≡ ¬X¬φ
φ1Wφ2 ≡ φ1Uφ2 ∨ Gφ1

11 / 30

Intro Background Tasks Conclusion

Temporal Operators

12 / 30

Intro Background Tasks Conclusion

Temporal Operators (cont’d)

13 / 30

Intro Background Tasks Conclusion

LTLp: Semantics

Given a formula φ, a trace π = π1, π2, . . . , πlen(π) ∈ Σ+, and
a time instant i , with 1 ≤ i ≤ len(π), the semantics is defined
as follows:

π, i |= a iff a = πi ,
π, i |= ¬φ iff π, i ̸|= ¬φ,
π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2,
π, i |= Xφ iff i < len(π) and π, i + 1 |= φ,
π, i |= φ1Uφ2 iff π, j |= φ2 for some j , with i ≤ j ≤ len(π),
and π, k |= φ1 for all k = i , . . . , j − 1.

We write π |= φ, and we say that π satisfies φ, if π, 1 |= φ.

14 / 30

Intro Background Tasks Conclusion

LTLp and Finite-state Automata

Theorem

Given an LTLp formula φ over Σ there exists a Finite-state
Automaton Aφ over Σ such that Aφ accepts exactly the traces
that satisfy φ.

Example

Formula:
G(a→Fb)

Explanation:
For all time instants, if a oc-
curs, b must eventually follow.

s0 s1

b, c
a

a, c

b

15 / 30

Intro Background Tasks Conclusion

Declarative Process Specifications

Traditional approach:

procedural model for the process,
temporal logic for traces properties.

Declarative approach: use temporal formulae as model:

A model is a set of temporal formulae,
Admissible traces are the ones satisfying all the formulae.
A declarative model specifies what properties a solution should
obey, rather than how traces should be routed to satisfy the
constraints.

Declarative Process Mining considers declarative models.

16 / 30

Intro Background Tasks Conclusion

Pros and Cons of Declarative Models

Pros:
Less prone to excluding traces that should be allowed.

Cons:
Difficult to model processes using temporal formulae.

17 / 30

Intro Background Tasks Conclusion

declare Templates

Template LTLp
Init(a) a

Exactly2(a) ¬aU(a ∧ X(¬aU(a ∧ ¬X(Fa))))
Response(a, b) G(a→Fb)

RespondedExistence(a, b) Fa→Fb
AlternateResponse(a, b) G(a→X(¬aUb))

Precedence(a, b) (¬b)Wa
ChainPrecedence(a, b) G(Xb→a) ∧ ¬b

Choice(a, b) F(a ∨ b)
ExclusiveChoice(a, b) F(a ∨ b) ∧ ¬(Fa ∧ Fb)
CoExistence(a, b) Fa ↔ Fb

Table: Some declare templates and corresponding LTLp formula.

18 / 30

Intro Background Tasks Conclusion

Table of Contents

1 Introduction

2 Background
PM
LTL
DPM

3 Tasks
Logical Encoding
Log Generation and Conformance Checking
Process Discovery
Trace Alignment

4 Conclusion

19 / 30

Intro Background Tasks Conclusion

Logical Encoding

We want to show how to encode logically

process traces,

temporal formulae,

the corresponding semantics.

Trace Encoding

The trace aab can be encoded with the following facts:

trace(a,1).

trace(a,2).

trace(b,3).

20 / 30

Intro Background Tasks Conclusion

Logical Encoding (cont’d)

Formula

The formula Response(a, b) = G(a→Fb) can be encoded by its
corresponding automaton:
init(s_0).

acc(s_0).

trans(s_0,a,s_1).

trans(s_1,b,s_0).

trans(s_0,b,s_0).

trans(s_0,c,s_0).

trans(s_1,a,s_1).

trans(s_1,c,s_1).

s0 s1

b, c
a

a, c

b

21 / 30

Intro Background Tasks Conclusion

Logical Encoding (cont’d)

Reading a trace

cur_state(S,0) :- init(S).

cur_state(S2,T) :- cur_state(S1,T-1),

trace(A,T),

trans(S1,A,S2).

Checking for satisfaction

last(T) :- trace(_,T), not trace(_,T+1).

sat :- cur_state(S,T), last(T), accepting(S).

Generate a trace

time(1..t).

{trace(A,T}:activity(A)} = 1 :- time(T).

22 / 30

Intro Background Tasks Conclusion

Log Generation and Conformance Checking

Conformance Checking
Problem: Given a process trace π and an LTLp formula φ,
determine whether π |= φ holds.
Solution: Check if the formula holds by invoking a SAT solver
to verify whether sat is true.

Log Generation
Problem: Given an LTLp formula φ, find a set of traces π
such that π |= φ.
Solution: invoke an allSAT solver to guess the traces.

23 / 30

Intro Background Tasks Conclusion

Process Discovery

Problem: Given an event log L, derive a formula φ such that
every trace in the log satisfies the formula, i.e.,
∀π ∈ L : π |= φ.

Solution: Use an allSAT solver to compute a
(language-minimal) formula/automaton that captures the
behaviour represented in L.
Special Case (Declare Templates): Instead of deriving a
new formula, verify the conformance of predefined constraints
against the log (and eliminate any redundant constraints).

24 / 30

Intro Background Tasks Conclusion

Trace Alignment

Trace Alignment is the problem of aligning, with a minimal
number of modifications, a trace π with a formula φ,
producing a new trace π′ satisfying φ

Example

Given φ = G(a → Fb) and π = aba, the trace can be aligned by
removing the last occurrence of a producing π′ = aba

25 / 30

Intro Background Tasks Conclusion

Trace Alignment: Encoding

The problem can be encoded as cost-optimal planning.
The action allowed are:

del: the removal of an activity,
add: the insertion of an activity.

A special action sync, of cost null, is used.
The problem reduces to a text cursor moving from left to right

Example (cont’d)

Trace π′ = aba is produced from trace π = aba as follows:

State: |aba

Action: sync

State: a|ba

Action: sync

State: ab|a

Action: del

State: ab|

s0 s1

b, c
a

a, c

b

26 / 30

Intro Background Tasks Conclusion

Trace Alignment: Encoding

The problem is represented using the Planning Domain
Definition Language (PDDL).

It can be solved using any standard AI planner that supports
cost actions.

sync

(:action sync

:parameters (?t1 - trace_state ?e - activity

?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (not (cur_state ?t1)) (cur_state ?t2)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

27 / 30

Intro Background Tasks Conclusion

Trace Alignment (cont’d)

add and del

(:action add

:parameters (?e - activity)

:effect (and (increase (total-cost) 1)

(forall (?s1 ?s2 - automaton_state)

(when (and (cur_state ?s1)

(automaton ?s1 ?e ?s2))

(and (not (cur_state ?s1))

(cur_state ?s2))))))

(:action del

:parameters (?t1 - trace_state ?e - activity

?t2 - trace_state)

:precondition (and (cur_state ?t1) (trace ?t1 ?e ?t2))

:effect(and (increase (total-cost) 1)

(not (cur_state ?t1)) (cur_state ?t2)))

28 / 30

Intro Background Tasks Conclusion

Table of Contents

1 Introduction

2 Background
PM
LTL
DPM

3 Tasks
Logical Encoding
Log Generation and Conformance Checking
Process Discovery
Trace Alignment

4 Conclusion

29 / 30

Intro Background Tasks Conclusion

Conclusion and Future Work

Summary: We explored some key problems in Declarative
Process Mining:

Log Generation, Conformance Checking, and Trace Alignment
(reasoning problems over event data).
Process Discovery (mining/learning from event data).

Approach: Reduce these problems to combinatorial search
and optimization, and solve them efficiently using Automated
Reasoning (SAT solvers and AI Planners).

Future Work: Learn/repair process models via local
perturbations.

30 / 30

	Introduction
	Background
	PM
	LTL
	DPM

	Tasks
	Logical Encoding
	Log Generation and Conformance Checking
	Process Discovery
	Trace Alignment

	Conclusion

