Formal Explanations From Classifiers to Rankers

Francesco Chiariello

Deep Learning Revolution

Milestones in Deep Learning

- 2012: the CNN AlexNet wins the ImageNet Challenge, showcasing the power of DL techniques
- 2013-2014: VAE (Variational Autoencoder) and GANs (Generative Adversarial Networks) are introduced, marking the first major success of Generative AI
- 2013-2015: DQNs (Deep Q-Networks) achieve human-level performance on Atari games
- 2016: AlphaGo defeats the world Go champion
- 2017: Transformer architecture revolutionizes sequence modeling
- 2022: ChatGPT popularizes large-scale language models

Deep Learning Applications

As deep learning performance continues to improve, its range of applications continues to expand, including

- High-risk:
 - Critical infrastructure
 - Creditworthiness
 - Law enforcement
 - Biometric data
- Safety-critical:
 - Self-driving cars
 - Unmanned aerial vehicles
 - ...

eXplainable Artificial Intelligence (XAI)

- While models become larger, more complex, more powerful, and widespread, they remain **opaque**.
- There is, therefore, an increasing need to explain them.
- XAI is dedicated to helping human decision-makers understand the decisions made by ML systems, to deliver Trustworthy AI.

XAI Approaches

Popular XAI approaches include:

- LIME (Local Interpretable Model-agnostic Explanations) Ribeiro et al., 2016
- Produces interpretable models that locally approximate the behavior of the original model around a specific prediction.
- SHAP (SHapley Additive exPlanations) Lundberg and Lee, 2017
 - Assigns feature importance based on Shapley values Shapley, 1953.
- Anchors Ribeiro et al., 2018
 - Identifies a set of features that, with high precision, "anchor" a prediction.

However, these approaches are based on heuristic methods and provide **no formal guarantees** of rigour.

Features

- **Feature Set**: A set of features $\mathcal{F} = \{1, \dots, m\}$.
 - Each feature $i \in \mathcal{F}$ has an associated domain D_i .
 - Domains can be either categorical or numerical.
- Feature Space: The space of all possible feature vectors, defined as

$$\mathbb{F}=\prod_{i=1}^m D_i.$$

• Given $S \subseteq \mathcal{F}$, two vectors $\mathbf{x}, \mathbf{v} \in \mathbb{F}$ agree on S

$$\mathbf{x} \sim_{\mathcal{S}} \mathbf{v} \overset{\mathsf{def}}{\iff} \forall i \in \mathcal{S}, x_i = v_i$$

We also define

$$[\mathbf{v}]_{\mathcal{S}} := [\mathbf{v}]_{\sim_{\mathcal{S}}} = \{\mathbf{x} \in \mathbb{F} : \mathbf{x} \sim_{\mathcal{S}} \mathbf{v}\}$$

Classifiers

• Classifier: Given a set of classes $\mathcal{K} = \{c_1, \dots, c_k\}$, a classifier is a function

$$\kappa: \mathbb{F} \to \mathcal{K}$$

that assigns each feature vector $\mathbf{x} \in \mathbb{F}$ to a class $c \in \mathcal{K}$.

- Classification Problem: Learn the classifier κ from training examples (\mathbf{x}, c) .
- In what follows, we assume the classifier is given
- Explanation problem: given the classifier κ and a $\mathbf{v} \in \mathbb{F}$, why κ predict $\kappa(\mathbf{v})$ on \mathbf{v} ?

Running example: Classifier

- $\mathcal{F} = \{Genre, Dur., Lang.\}$
- $\mathcal{K} = \{1, 2, 3, 4, 5\}$

- $D_{\mathsf{Genre}} = \{\mathsf{Action}, \mathsf{Comedy}, \mathsf{Drama}\}$
- $D_{Dur.} = \{Short, Standard, Long\}$
- $D_{\mathsf{Lang.}} = \{\mathsf{English}, \mathsf{Non}\text{-}\mathsf{English}\}$

- $\mathbf{v} = \langle \mathsf{Comedy}, \mathsf{Long}, \mathsf{Non}\text{-}\mathsf{English} \rangle \mapsto 1$
- $\mathbf{v}' = \langle \mathsf{Action}, \mathsf{Standard}, \mathsf{English} \rangle \mapsto \mathsf{4}$

Weak Abductive Explanation (WeakAXp)

• A set $S \subseteq \mathcal{F}$ is a Weak Abductive Explanation if

$$\forall \mathbf{x} \in [\mathbf{v}]_{\mathcal{S}}, \kappa(\mathbf{x}) = \kappa(\mathbf{v})$$

i.e., if the classifier predicts the same class for all $\mathbf x$ that agree with $\mathbf v$ on $\mathcal S$.

Theorem (Monotonicity)

If S is a WeakAXp, then $S' \supseteq S$ is also a WeakAXp.

Abductive Explanation (AXp)

- A set $S \subseteq \mathcal{F}$ is an **Abductive Explanation** if:
 - \bigcirc WeakAXp(S)
 - $\circled{\mathcal{S}}' \subset \mathcal{S} \implies \neg WeakAXp(S')$

In other words, AXps are subset-minimal WeakAXps.

Observation

To verify condition (2), it is sufficient to consider only the maximal proper subsets of S.

Property (2) can then be rewritten as follows:

$$\forall i \in \mathcal{S} : \neg WeakAXp(\mathcal{S} \setminus \{i\})$$

Running Example: Explanations

- $\mathcal{F} = \{\text{Genre, Duration, Language}\}$
- ullet ${f v} = \langle {\sf Comedy, Long, Non-English}
 angle \mapsto 1$
 - AXps: {Genre, Language}
- $\mathbf{v}' = \langle Action, Standard, English \rangle \mapsto 4$
 - AXps: {Duration, Language}

Contrastive Explanation (CXp)

• A set $\mathcal{S} \subseteq \mathcal{F}$ is a **Weak Contrastive Explanation** (WeakCXp) if

$$\exists \mathbf{x} \in [\mathbf{v}]_{\mathcal{F} \setminus \mathcal{S}}, \kappa(\mathbf{x}) \neq \kappa(\mathbf{v})$$

i.e., even by fixing all the features not in \mathcal{S} , the prediction still change.

• A Contrastive Explanation is a subset-minimal WeakCXp.

AXps and CXps

- AXp: subset-minimal set of features to ensure the predictions
- CXp: subset-minimal set of features to change the predictions
- Duality: AXps are Minimal Hitting Sets of CXps and vice-versa

Rankings and Preorders

- Given a set S, a **preorder** \leq on S is a binary relation on S that is both
 - Reflexive: $\forall a \in S, a \prec a$.
 - Transitive: $\forall a, b, c \in S, a \prec b \land b \prec c \implies a \prec c$.
- A ranking ≤ is a preorder which is also
 - Strongly connected: $\forall a, b \in S, a \leq b \lor b \leq a$.

Orders

- An order \prec is a preorder that is also
 - Antisymmetric: $\forall a, b \in S, a \leq b \land b \leq a \implies a = b$.
- We call linear order an order that is also strongly connected.
- Preorders are more general than orders in that they admit ties.

Ranking Functions (or Rankers)

- A ranking function on S is a function $f: S \to \mathbb{R}$.
 - The value $f(a) \in \mathbb{R}$ represents the *score* assigned to $a \in S$.
- The ranker f on S induce a ranking \leq_f on S, defined by

$$a \leq_f b \iff f(a) \leq f(b)$$

- Conversely, given a ranking \leq on S there exists a ranking function f on S, such that $\leq = \leq_f$.
- **Note:** Rankings and ranking functions are also referred to as *preferences* and *utility functions* in microeconomic theory.

Classifiers as Rankers

• Let $\kappa: \mathbb{F} \to \mathcal{K}$ a classifier with $\mathcal{K} = \{c_1, \ldots, c_k\}$ linearly ordered, i.e., $c_i \preceq_{\mathcal{K}} c_{i+1}$. Such a classifier induces a ranking \preceq_{κ} defined by

$$\mathbf{x} \preceq_{\kappa} \mathbf{x}' \iff \kappa(\mathbf{x}) \preceq_{\mathcal{K}} \kappa(\mathbf{x}').$$

• The classifier κ itself can be identified with the ranking function $f: \mathbb{F} \to \{1, \dots, k\}$ by identifying $c_i = i$, for $i = 1, \dots, k$.

Running Example: Classifier as ranker

Given the two points

- $\mathbf{v} = \langle \mathsf{Comedy}, \mathsf{Long}, \mathsf{Non-English} \rangle \mapsto 1$
- $\mathbf{v}' = \langle \text{Action, Standard, English} \rangle \mapsto 4$

the decision tree classifier defines the rank $\mathbf{v} \prec \mathbf{v}'$.

Explanation Problem

We aim to address the following question:

• Given a ranker $f: \mathbb{F} \to \mathbb{R}$ and a pair of vectors $\mathbf{v}, \mathbf{v}' \in \mathbb{F}$ such that $\mathbf{v} \preceq_f \mathbf{v}'$:

Why is \mathbf{v}' ranked at least as highly as \mathbf{v} ?

Reduction to Classification

• Consider the binary classifier $\kappa : \mathbb{F}^2 \to \{0,1\}$, defined by

$$\kappa(\mathbf{x}, \mathbf{x}') = \begin{cases} 1, & \text{if } \mathbf{x} \leq_f \mathbf{x}' \\ 0, & \text{otherwise.} \end{cases}$$

ullet One can then apply FXAI for classifiers to κ

Reduction to Classification

• Consider the binary classifier $\kappa : \mathbb{F}^2 \to \{0,1\}$, defined by

$$\kappa(\mathbf{x}, \mathbf{x}') = \begin{cases} 1, & \text{if } \mathbf{x} \leq_f \mathbf{x}' \\ 0, & \text{otherwise.} \end{cases}$$

ullet One can then apply FXAI for classifiers to κ

Issues

- each vector has its own copy of the features,
- each feature is treated independently,
- explanations are defined over the new feature set $\mathcal{F} \cup \mathcal{F}'$ obtained by adding a primed copy for each feature.

Abductive Explanations

• A set $S \subseteq \mathcal{F}$ is a Weak Abductive Explanation if

$$\forall (\mathbf{x}, \mathbf{x}') \in [\mathbf{v}]_{\mathcal{S}} \times [\mathbf{v}']_{\mathcal{S}}, \mathbf{x} \leq_f \mathbf{x}'.$$

- Note:
 - features $i \in \mathcal{S}$ are fixed for both vectors \mathbf{x}, \mathbf{x}'
 - ullet explanations are defined over the original feature set \mathcal{F} .
- A set $S \subseteq \mathcal{F}$ is an **Abductive Explanation** if:
 - \bigcirc WeakAXp(S)

Running Example

Given the two points

- $\mathbf{v} = \langle \mathsf{Comedy}, \mathsf{Long}, \mathsf{Non-English} \rangle$
- $\mathbf{v}' = \langle Action, Standard, English \rangle$

AXps for why $\mathbf{v} \leq \mathbf{v}'$ are the following: {Duration, Language}, {Genre, Language}, {Genre, Duration}.

Properties

Theorem (Monotonicity)

If S is a WeakAXp, then $S' \supseteq S$ is also a WeakAXp.

Properties

Theorem (Monotonicity)

If S is a WeakAXp, then $S' \supseteq S$ is also a WeakAXp.

Theorem (Granularity)

If $\forall \mathbf{x}, \mathbf{x}' \in \mathbb{F} : (\mathbf{x} \leq_1 \mathbf{x}' \implies \mathbf{x} \leq_2 \mathbf{x}')$ then every WeakAXp of \leq_1 is also a WeakAXp of \leq_2 .

Which Explanation to Prefer?

- AXps are not unique.
- Multiple cardinality-minimal AXps may exist.
- This raises the question: which explanation should be preferred?
- We address this by defining a preference relation over sets of features of the same size.

Score Function:
$$score(S) = \min_{(\mathbf{x}, \mathbf{x}') \in [\mathbf{v}]_S \times [\mathbf{v}']_S} (f(\mathbf{x}') - f(\mathbf{x}))$$

Preference Relation:
$$S_1 \leq S_2 \iff score(S_1) \leq score(S_2)$$

Key Property: WeakAXp(
$$S$$
) \iff $score(S) \ge 0$

The score is particularly important when f has an intrinsic meaning.

Comparing Multiple Vectors

- So far, we have only considered pairwise comparisons.
- We now address full rankings:

$$\mathbf{v}^{(1)} \preceq_f \cdots \preceq_f \mathbf{v}^{(n)}$$

• A set $S \subseteq \mathcal{F}$ is a **WeakAXp** if:

$$\forall \left(\boldsymbol{x}^{(1)}, \dots, \boldsymbol{x}^{(n)}\right) \in [\boldsymbol{v}^{(1)}]_{\mathcal{S}} \times \dots \times [\boldsymbol{v}^{(n)}]_{\mathcal{S}}, \ \boldsymbol{x}^{(1)} \preceq_{f} \dots \preceq_{f} \boldsymbol{x}^{(n)}$$

Algorithms for Model-agnostic Explanations

- In the following, we shall see how to compute an AXp.
- The proposed approach is model-agnostic, requiring only black-box access to the model.
- We then test our approach on a neural network model that estimates the probability of breast cancer recurrence.

Verify a WeakAXp

$$\mathsf{WeakAXp}(\mathcal{S}) \iff \forall (\mathbf{x},\mathbf{x}') \in [\mathbf{v}]_{\mathcal{S}} \times [\mathbf{v}']_{\mathcal{S}}, \mathbf{x} \preceq_f \mathbf{x}'$$

```
Input: S \subseteq \mathcal{F}
Output: WeakAXp(S)
 1: for x \in [v]_S do
 2: f_x \leftarrow f(\mathbf{x})
    for x' \in [v']_S do
 4: f_{-}x' \leftarrow f(\mathbf{x}')
 5: if f(x) > f(x') then
             return false
 6.
        end if
 7:
 8:
       end for
 9: end for
10: return true
```

Compute an AXp

The monotonicity of WeakAXps allows for efficient computation of an AXp.


```
Input: S \subseteq \mathcal{F}, start = 0
Output: S

1: for i \leftarrow start to m-1 do

2: if S[i] = 1 then

3: S[i] \leftarrow 0

4: if WeakAXP(S) then

5: return DFS-AXP(S, i+1)

6: end if

7: S[i] \leftarrow 1 {Backtrack}

8: end if

9: end for

10: return S
```

Subset lattice for 3 features

Case study: Breast Cancer

We consider the **Breast Cancer Dataset**¹ containing data about breast cancer recurrence within 5 years after surgery.

Characteristic	Value
#instances	286
#features	9
#classes	2
No recurrence	201
With recurrence	85
Recurrence rate	$\approx 30\%$

Feature	Name	$ \mathbb{D}_i $
0	age	6
1	menopause	3
2	tumor-size	11
3	inv-nodes	7
4	node-caps	3
5	deg-malig	3
6	breast	2
7	breast-quad	6
8	irradiat	2

¹https://archive.ics.uci.edu/dataset/14/breast+cancer

Dataset Preparation

- We denote cancer recurrence with 1 and its absence with 0.
- To enable the neural network to handle categorical variables, we one-hot encode them.
- This results in a 43-dimensional feature space, representing 299376 distinct possible patients.

Model

- Architecture: Feedforward Neural Network with 3 dense layers
- Training: We train the model using the Adam optimizer and binary cross-entropy as the loss function, allocating 80% of the dataset for training and 20% for testing
- **Results**: 72% accuracy, 53% F1 score. (as a comparator, the baseline model has 64% accuracy, 0% F1 score).

Layer type	Shape	Param #
Dense (ReLU)	(43, 64)	2816
Dense (ReLU)	(64, 32)	2080
Dense (sigmoid)	(32, 1)	33
Trainable params		4929
Optimizer params		9860
Total params		14789

Experiments: multiple pairs

- We randomly sample the feature space to select 500 pairs
 v, v' such that v ≺_f v'.
- For each pair, we then compute an AXp.

Exp. Size	Avg Time (s)	Std Dev (s)	Support
9	2.49	0.65	27
8	6.55	4.18	104
7	19.67	16.90	212
6	42.02	39.08	123
5	129.37	78.33	32
4	353.58	14.11	2
Overall	29.87	46.70	500

Experiments: fixed pair

Feature Vectors and Abductive Explanations

\mathcal{F}	0	1	2	3	4	5	6	7	8
V	5	1	5	5	0	1	1	2	1
v'	1	2	3	2	0	2	0	0	1
$ \mathcal{S}_1 $	1	0	1	0	1	0	1	1	0
$egin{array}{c} \mathcal{S}_1 \ \mathcal{S}_2 \end{array}$	1	0	1	0	1	1	0	1	0

Scores:

•
$$score(S_1) = 0.056$$
; $score(S_2) = 0.002$.

Exp. Size	Avg Time (s)	Support
7	67.04	3
6	74.72	3
5	157.33	4
Overall	105.46	10

Conclusions

In this talk, we have

- seen how to apply Formal Explainability to ranking functions
- implemented our approach and tested on real-world data on a real application, showing its feasibility

The bottleneck remains the scalability of the approach. To address this, we see two possibilities

- the use of a model-based approach that leverages Automated Reasoning tools.
- the use of probabilistic explanations.

Thank you for your attention!

Financé par

References I

- Shapley, L. S. (1953). A value for n-person games. In H. W. Kuhn & A. W. Tucker (Eds.), *Contributions to the theory of games II* (pp. 307–317). Princeton University Press.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2016)." why should I trust you?": Explaining the predictions of any classifier. *KDD*. 1135–1144.
- Lundberg, S. M., & Lee, S. (2017). A unified approach to interpreting model predictions. *NIPS*, 4765–4774.
- Ribeiro, M. T., Singh, S., & Guestrin, C. (2018). Anchors: High-precision model-agnostic explanations. *AAAI*, 1527–1535.