Formal Explanations

From Classifiers to Rankers

Francesco Chiariello

1/34



Intro
@000

Deep Learning Revolution

Milestones in Deep Learning

2012: the CNN AlexNet wins the ImageNet Challenge,
showcasing the power of DL techniques

2013-2014: VAE (Variational Autoencoder) and GANs
(Generative Adversarial Networks) are introduced, marking the
first major success of Generative Al

2013-2015: DQNs (Deep Q-Networks) achieve human-level
performance on Atari games

2016: AlphaGo defeats the world Go champion

2017: Transformer architecture revolutionizes sequence
modeling

2022: ChatGPT popularizes large-scale language models

2/34



Intro
[e] Tele}

Deep Learning Applications

As deep learning performance continues to improve, its range of
applications continues to expand, including
o High-risk:
o Critical infrastructure
o Creditworthiness
e Law enforcement
o Biometric data
e Safety-critical:

o Self-driving cars
e Unmanned aerial vehicles
o ...
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eXplainable Artificial Intelligence (XAl)

@ While models become larger, more complex, more powerful,
and widespread, they remain opaque.

@ There is, therefore, an increasing need to explain them.

@ XAl is dedicated to helping human decision-makers
understand the decisions made by ML systems, to deliver
Trustworthy Al.
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XAl Approaches

Popular XAl approaches include:

e LIME (Local Interpretable Model-agnostic
Explanations) Ribeiro et al., 2016

e Produces interpretable models that locally approximate the
behavior of the original model around a specific prediction.

e SHAP (SHapley Additive exPlanations) Lundberg and Lee, 2017

e Assigns feature importance based on Shapley values Shapley,
1953.

@ Anchors Ribeiro et al., 2018

o lIdentifies a set of features that, with high precision, “anchor” a
prediction.

However, these approaches are based on heuristic methods and
provide no formal guarantees of rigour.
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Features

o Feature Set: A set of features 7 = {1,..., m}.

o Each feature i € F has an associated domain D;.
e Domains can be either categorical or numerical.

o Feature Space: The space of all possible feature vectors,
defined as

e Given § C F, two vectors x,v € F agree on &
X ~SV gt VieS, xi=v;
@ We also define
[V]s :=[v]og ={x €F:x ~s v}
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Classifiers

e Classifier: Given a set of classes K = {cy, ..., ck}, a classifier
is a function
k:F—K
that assigns each feature vector x € IF to a class ¢ € K.
o Classification Problem: Learn the classifier £ from training
examples (x, ¢).
@ In what follows, we assume the classifier is given

e Explanation problem: given the classifier k and a v € F,
why « predict x(v) on v?
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Running example: Classifier

@ Dgenre = {Action, Comedy, Drama}
e Dp,,. = {Short, Standard, Long}
® Dyiang. = {English, Non-English}

e F = {Genre,Dur.,Lang.}
o K =1{1,2,3,4,5)

v = (Comedy, Long, Non-English) — 1
v/ = (Action, Standard, English) — 4
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Weak Abductive Explanation (WeakAXp)

@ Aset S C Fis a Weak Abductive Explanation if
Vx € [v]s, k(x) = K(v)

i.e., if the classifier predicts the same class for all x that agree
with v on S.

Theorem (Monotonicity)

If S is a WeakAXp, then S’ O S is also a WeakAXp.

9/34



FXAI
[e]elele] Yelele]

Abductive Explanation (AXp)

@ A set § C Fis an Abductive Explanation if:

Q WeakAXp(S)
Q §'CcS = ~WeakAXp(S')

In other words, AXps are subset-minimal WeakAXps.

Observation

To verify condition (2), it is sufficient to consider only the maximal
proper subsets of S.

Property (2) can then be rewritten as follows:

VieS: =WeakAXp(S\ {i})
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Running Example: Explanations

e F = {Genre, Duration, Language}

e v = (Comedy, Long, Non-English) — 1
o AXps: {Genre, Language}

e v/ = (Action, Standard, English) — 4
o AXps: {Duration,Language}
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Contrastive Explanation (CXp)

@ Aset S C Fis a Weak Contrastive Explanation
(WeakCXp) if

Ix € [Vms. £(x) # K(V)

i.e., even by fixing all the features not in &, the prediction still
change.

@ A Contrastive Explanation is a subset-minimal WeakCXp.
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AXps and CXps

@ AXp: subset-minimal set of features to ensure the predictions
@ CXp: subset-minimal set of features to change the predictions

@ Duality: AXps are Minimal Hitting Sets of CXps and
vice-versa
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Rankings and Preorders

@ Given a set S, a preorder < on S is a binary relation on S
that is both

o Reflexive: Va€ 5,2 < a.
e Transitive: Va,b,ce€ S,a<bAb=<c = a=c.

@ A ranking =< is a preorder which is also
e Strongly connected: Va,b € S;a<bVb=a.
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Orders

@ An order < is a preorder that is also
e Antisymmetric: Va,be S;a<bAb=<a — a=b.

@ We call linear order an order that is also strongly connected.

@ Preorders are more general than orders in that they admit ties.
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Ranking Functions ( or Rankers)

@ A ranking function on S is a function f : S — R.
o The value f(a) € R represents the score assigned to a € S.

@ The ranker f on S induce a ranking <f on S, defined by
a=fb < f(a) <f(b)

@ Conversely, given a ranking < on S there exists a ranking
function f on S, such that <==.

@ Note: Rankings and ranking functions are also referred to as
preferences and utility functions in microeconomic theory.
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Classifiers as Rankers

o Let k: F — K a classifier with K = {ci, ..., ¢} linearly
ordered, i.e., ¢; <k cj11. Such a classifier induces a ranking
=<y defined by

x <, X' = k(x) <k K(X).
@ The classifier k itself can be identified with the ranking

function f : F — {1,..., k} by identifying ¢; = i, for
i=1,... k
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Running Example: Classifier as ranker

Given the two points
e v = (Comedy, Long, Non-English) — 1
e v/ = (Action, Standard, English) — 4
the decision tree classifier defines the rank v < v'.
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Explanation Problem

We aim to address the following question:

@ Given a ranker f : F — R and a pair of vectors v,v’ € [ such
that v < v':

Why is v/ ranked at least as highly as v?
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Reduction to Classification

o Consider the binary classifier x : F2 — {0, 1}, defined by

(x.) 1, ifx=<¢x
k(x,x') = _
0, otherwise.

@ One can then apply FXAI for classifiers to x

20/34



FXAI for Rankers
000000800000 000000000

Reduction to Classification

o Consider the binary classifier x : F2 — {0, 1}, defined by

(x.) 1, ifx=<¢x
k(x,x') = _
0, otherwise.

@ One can then apply FXAI for classifiers to x

each vector has its own copy of the features,

each feature is treated independently,

explanations are defined over the new feature set 7 U F’
obtained by adding a primed copy for each feature.
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Abductive Explanations

@ Aset S C Fis a Weak Abductive Explanation if
V(x,x') € [v]s x [V]s,x <f X'

o Note:

o features j € S are fixed for both vectors x, x’

e explanations are defined over the original feature set F.
@ Aset § C Fis an Abductive Explanation if:

Q WeakAXp(S)
Q S§'CcS = —~WeakAXp(S')
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Running Example

Given the two points
e v = (Comedy, Long, Non-English)
e v/ = (Action, Standard, English)
AXps for why v < v/ are the following:
{Duration, Language}, {Genre, Language}, {Genre, Duration}.
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Properties

Theorem (Monotonicity)
If S is a WeakAXp, then S’ O S is also a WeakAXp.

23/34



FXAI for Rankers
000000000 e00000000000

Properties

Theorem (Monotonicity)
If S is a WeakAXp, then S’ O S is also a WeakAXp.

Theorem (Granularity)

Ifvx,x' € F: (x <1 X' = x =<, x) then every WeakAXp of <1
is also a WeakAXp of <.
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Which Explanation to Prefer?

@ AXps are not unique.
@ Multiple cardinality-minimal AXps may exist.
@ This raises the question: which explanation should be preferred?

@ We address this by defining a preference relation over sets of
features of the same size.

Score Function: score(S) = min (f(x') = f(x))
(x,x")€[v]s x[v']s

Preference Relation: S; <S8, <= score(S;) < score(Sz)
Key Property: WeakAXp(S) <= score(S) > 0

The score is particularly important when f has an intrinsic meaning.
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Comparing Multiple Vectors

@ So far, we have only considered pairwise comparisons.

@ We now address full rankings:

v <<y

@ Aset S C Fisa WeakAXp if:

v(x®, o xMy e v]s x - x vM]s, x® <4< x(™
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Algorithms for Model-agnostic Explanations

@ In the following, we shall see how to compute an AXp.

@ The proposed approach is model-agnostic, requiring only
black-box access to the model.

@ We then test our approach on a neural network model that
estimates the probability of breast cancer recurrence.
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Verity a WeakAXp

WeakAXp(S) < V(x,x') € [v]s x [V]s,x = X

Input: S C F
Output: WeakAXp(S)
1: for x € [v]s do

2. fx <« f(x)

3:  for x' € [V/]s do

4. fx « f(x')

5: if f_x > f_x" then
6: return false

7: end if

8: end for

9: end for

10: return true
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Compute an AXp

The monotonicity of WeakAXps allows for efficient computation of
an AXp.
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Case study: Breast Cancer

We consider the Breast Cancer Dataset! containing data about
breast cancer recurrence within 5 years after surgery.

Feature Name |D;|
Characteristic Value 0 age 6
. 1 menopause 3
#tinstances 286 .
2 tumor-size 11
##features 9 .
3 inv-nodes 7
F#classes 2
4 node-caps 3
No recurrence 201 5 deg-mali 3
With recurrence 85 € g
Recurrence rate =~ 30% 0 breast 2
7 breast-quad | 6
8 irradiat 2

https://archive.ics.uci.edu/dataset/14/breast-+cancer
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Dataset Preparation

@ We denote cancer recurrence with 1 and its absence with 0.

@ To enable the neural network to handle categorical variables,
we one-hot encode them.

@ This results in a 43-dimensional feature space, representing
299376 distinct possible patients.
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@ Architecture: Feedforward Neural Network with 3 dense
layers

e Training: We train the model using the Adam optimizer and
binary cross-entropy as the loss function, allocating 80% of
the dataset for training and 20% for testing

@ Results: 72% accuracy, 53% F1 score. (as a comparator, the
baseline model has 64% accuracy, 0% F1 score).

Layer type Shape Param #
Dense (ReLU) (43, 64) 2816
Dense (ReLU) (64, 32) 2080

Dense (sigmoid) (32, 1) 33

Trainable params 4929
Optimizer params 9860
Total params 14789
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Experiments: multiple pairs

@ We randomly sample the feature space to select 500 pairs
v, Vv’ such that v <¢ Vv'.

@ For each pair, we then compute an AXp.

Exp. Size | Avg Time (s) | Std Dev (s) | Support
9 2.49 0.65 27
8 6.55 4.18 104
7 19.67 16.90 212
6 42.02 39.08 123
5 129.37 78.33 32
4 353.58 14.11 2
Overall 29.87 46.70 500
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Experiments: fixed pair

Feature Vectors and Abductive Explanations

F 10 1 2 3 4 5 6 7 8

v 5 1 5 5 0 1 1 2 1

v |1 2 3 2 0 2 0 0 1

S$(11 01 0 1 0 1 1 O

S|i1 01 01 1 0 1 0
Scores:

@ score(S1) = 0.056; score(S,) = 0.002.

Exp. Size | Avg Time (s) | Support

7 67.04 3
6 74.72 3
5 157.33 4

Overall 105.46 10
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Conclusions

In this talk, we have
@ seen how to apply Formal Explainability to ranking functions

@ implemented our approach and tested on real-world data on a
real application, showing its feasibility

The bottleneck remains the scalability of the approach. To address
this, we see two possibilities

@ the use of a model-based approach that leverages Automated
Reasoning tools.

@ the use of probabilistic explanations.
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