Learning Temporal Properties from Event Logs via Sequential Analysis

Francesco Chiariello

IRIT, ANITI, University of Toulouse

Contact: <francesco.chiariello@irit.fr>

1 [Introduction](#page-1-0)

- [Sequential Analysis](#page-2-0)
- **•** [Event Logs](#page-4-0)
- [LTLp](#page-5-0)
- 2 [Approach](#page-7-0)

[Experiments](#page-14-0)

[Conclusion](#page-19-0)

Statistical hypothesis testing approach with the following features:

- **Sequential Data Processing: Data are examined in** sequence, often as soon as they become available.
- **Step-by-Step Decision Making:** At each step, decide to accept, reject, or gather more data based on the evidence.
- Data Efficiency: More efficient than traditional approaches, which process data in large batches.
- Robustness to Noise: Based on statistical principles.

[Introduction](#page-1-0) [Approach](#page-7-0) [Experiments](#page-14-0) [Conclusion](#page-19-0)

Sequential Analysis in Quality Control

Figure: Pizza Process (from the Process Mining Handbook)

- A process trace is a sequence of activities from start to end.
- An event log is a sequence of traces.
- Traces may be affected by noise.

• An LTL_p formula φ over a set of activities Σ is defined by the following grammar:

$$
\varphi ::= a \mid \neg \varphi \mid \varphi \land \varphi \mid X(\varphi) \mid \varphi \mathsf{U} \varphi
$$

• Common abbreviations are used: true, $→$, $∨$, F, G.

Given a formula φ , a trace $\pi = \pi_1, \pi_2, \ldots, \pi_{\mathit{len}(\pi)} \in \Sigma^+$, and a time instant *i*, with $1 \le i \le len(\pi)$, the semantics is defined as follows:

\n- \n
$$
\sigma \pi, i \models a
$$
 iff $a = \pi_i$,\n $\sigma \pi, i \models \neg \varphi$ iff $\pi, i \not\models \neg \varphi$,\n
\n- \n $\pi, i \models \varphi_1 \land \varphi_2$ iff $\pi, i \models \varphi_1$ and $\pi, i \models \varphi_2$,\n
\n- \n $\pi, i \models \mathsf{X}\varphi$ iff $i < len(\pi)$ and $\pi, i + 1 \models \varphi$,\n
\n- \n $\pi, i \models \varphi_1 \mathsf{U}\varphi_2$ iff $\pi, j \models \varphi_2$ for some j , with $i \leq j \leq len(\pi)$, and $\pi, k \models \varphi_1$ for all $k = i, \ldots, j - 1$.\n
\n

• We write $\pi \models \varphi$, and we say that π satisfies φ , if $\pi, 1 \models \varphi$.

[Introduction](#page-1-0)

- [Sequential Analysis](#page-2-0)
- **•** [Event Logs](#page-4-0)
- [LTLp](#page-5-0)

[Experiments](#page-14-0)

[Conclusion](#page-19-0)

• Problem: learn temporal formulae from a given log

Learning Temporal Properties from Event Logs via Sequential Analysis

- **Problem**: learn temporal formulae from a given log
- Solution: Apply sequential analysis
	- Select a candidate formula.
	- \bullet Select the *n*-th trace.
	- Compute the number of defects of the trace w.r.t. the formula.
	- Add it to the cumulative error *defects*
	- If:
- \bullet defects_n \leq A_n we accept the formula.
- defects_n $> R_n$ (with $R_n > A_n$) we reject the formula.
- if $A_n <$ defects_n $<$ R_n we select the $(n+1)$ -th trace and repeat.

Learning Temporal Properties from Event Logs via Sequential Analysis

- **Problem**: learn temporal formulae from a given log
- Solution: Apply sequential analysis
	- Select a candidate formula.
	- \bullet Select the *n*-th trace.
	- Compute the number of defects of the trace w.r.t. the formula.
	- Add it to the cumulative error *defects*
	- If:
- \bullet defects_n \leq A_n we accept the formula.
- defects_n $> R_n$ (with $R_n > A_n$) we reject the formula.
- if $A_n <$ defects_n $<$ R_n we select the $(n + 1)$ -th trace and repeat.
- Question 1: How do we select the thresholds?
- Question 2: How do we count the number of defects?

- Let p denote the probability of a defect, p_0 a tolerable value, and $p_1 > p_0$ an intolerable one.
- The null hypothesis is H_0 : $p = p_0$, while the alternative hypothesis is H_1 : $p = p_1$.
- SPRT defines A_n and R_n as:

where the parameters α and β allows to control type I and type II errors, respectively.

• We can therefore rewrite A_n and R_n as:

 $A_n = mn + c_A$ $R_n = mn + c_R$,

with $m > 0$, $c_A < 0$, and $c_R > 0$.

- Trace Alignment is the problem of aligning a trace π with a formula φ , producing a new trace π' satisfying $\varphi.$
- Actions:
	- add(?activity), of cost 1,
	- del, of cost 1,
	- read, of cost 0.
- Repair a trace can be reduced to cost-optimal planning.

rable of Contents

[Introduction](#page-1-0)

- [Sequential Analysis](#page-2-0)
- **•** [Event Logs](#page-4-0)
- [LTLp](#page-5-0)

2 [Approach](#page-7-0)

[Conclusion](#page-19-0)

Declarative Model

We consider the declarative model over $\Sigma = \{a, b, c, d, e\}$ specified by the following 5 constraints:

(C1)
$$
Exclusive Choice(c, d) \equiv F(c \lor d) \land \neg (Fc \land Fd)
$$

\n(C2)
$$
Response(a, b) \equiv G(a \rightarrow Fb)
$$

\n(C3)
$$
Responde Existence(a, e) \equiv Fa \rightarrow Fe
$$

\n(C4)
$$
Precedence(e, a) \equiv (\neg a) \text{We}
$$

\n(C5)
$$
AlternateResponse(b, c) \equiv G(b \rightarrow X(\neg b \cup c))
$$

We generate a log of 100 traces of length varying from 6 to 15. In particular, for each length, we generate 5 positive traces and 5 negative ones.

Table: Number of traces violating the constraints arranged according to the cost of repairs.

• We choose
$$
m = 1
$$
, $c_R = 8$, $c_A = -8$.

• We choose
$$
m = 1
$$
, $c_R = 8$, $c_A = -8$.

[Introduction](#page-1-0)

- [Sequential Analysis](#page-2-0)
- **•** [Event Logs](#page-4-0)
- [LTLp](#page-5-0)
- 2 [Approach](#page-7-0)

[Experiments](#page-14-0)

Conclusion and Future Work

Contributions:

- Learn LTL formulae with sequential analysis.
- Quantify defects using trace alignment.
- Approach robust and data-efficient.

Future Directions:

- **•** Select candidate formulae.
- **•** Learn full model.
- Quantitative semantics.

Thank you for your attention!

Financé par

