Learning Temporal Properties from Event Logs via Sequential Analysis

Francesco Chiariello

IRIT, ANITI, University of Toulouse

Contact: francesco.chiariello@irit.fr

F. Chiariello

Experiments

Table of Contents

1 Introduction

- Sequential Analysis
- Event Logs
- LTLp
- 2 Approach
- 3 Experiments

4 Conclusion

Sequential Analysis

Statistical hypothesis testing approach with the following features:

- Sequential Data Processing: Data are examined in sequence, often as soon as they become available.
- Step-by-Step Decision Making: At each step, decide to accept, reject, or gather more data based on the evidence.
- Data Efficiency: More efficient than traditional approaches, which process data in large batches.
- Robustness to Noise: Based on statistical principles.

Introduction

Approac

Experiments

Conclusion

Sequential Analysis in Quality Control

Introduction	Approach	Experiments	Conclu:
000000	00000	00000	000
Event Lars and D	***		

Figure: Pizza Process (from the Process Mining Handbook)

- A process trace is a sequence of activities from start to end.
- An event log is a sequence of traces.
- Traces may be affected by noise.

ion

• An LTL_p formula φ over a set of activities Σ is defined by the following grammar:

$$\varphi ::= \mathbf{a} \mid \neg \varphi \mid \varphi \land \varphi \mid \mathsf{X}(\varphi) \mid \varphi \mathsf{U} \varphi$$

• Common abbreviations are used: *true*, \rightarrow , \lor , F, G.

Introduction	Approach	Experiments	Conclusion
○○○○○●	00000	00000	000
ITI computies			

• Given a formula φ , a trace $\pi = \pi_1, \pi_2, \ldots, \pi_{len(\pi)} \in \Sigma^+$, and a time instant *i*, with $1 \le i \le len(\pi)$, the semantics is defined as follows:

•
$$\pi, i \models a$$
 iff $a = \pi_i$,
• $\pi, i \models \neg \varphi$ iff $\pi, i \not\models \neg \varphi$,
• $\pi, i \models \varphi_1 \land \varphi_2$ iff $\pi, i \models \varphi_1$ and $\pi, i \models \varphi_2$,
• $\pi, i \models X\varphi$ iff $i < len(\pi)$ and $\pi, i + 1 \models \varphi$,
• $\pi, i \models \varphi_1 U\varphi_2$ iff $\pi, j \models \varphi_2$ for some j , with $i \le j \le len(\pi)$,
and $\pi, k \models \varphi_1$ for all $k = i, \dots, j - 1$.

• We write $\pi \models \varphi$, and we say that π satisfies φ , if $\pi, 1 \models \varphi$.

Experiments

Table of Contents

Introduction

- Sequential Analysis
- Event Logs
- LTLp

3 Experiments

4 Conclusion

• Problem: learn temporal formulae from a given log

Introduction	Approach	Experiments	Conclusion
000000	o●ooo	00000	

Learning Temporal Properties from Event Logs via Sequential Analysis

- Problem: learn temporal formulae from a given log
- Solution: Apply sequential analysis
 - Select a candidate formula.
 - Select the *n*-th trace.
 - Compute the number of defects of the trace w.r.t. the formula.
 - Add it to the cumulative error defects_n
 - If:
- $defects_n \leq A_n$ we accept the formula.
- $defects_n \ge R_n$ (with $R_n > A_n$) we reject the formula.
- if $A_n < defects_n < R_n$ we select the (n + 1)-th trace and repeat.

Introduction	Approach	Experiments	Conclusion
000000	o●ooo	00000	

Learning Temporal Properties from Event Logs via Sequential Analysis

- Problem: learn temporal formulae from a given log
- Solution: Apply sequential analysis
 - Select a candidate formula.
 - Select the *n*-th trace.
 - Compute the number of defects of the trace w.r.t. the formula.
 - Add it to the cumulative error defects_n
 - If:
- $defects_n \leq A_n$ we accept the formula.
- $defects_n \ge R_n$ (with $R_n > A_n$) we reject the formula.
- if $A_n < defects_n < R_n$ we select the (n + 1)-th trace and repeat.
- Question 1: How do we select the thresholds?
- Question 2: How do we count the number of defects?

Introduction	Approach	Experiments	Conclusion
000000	00●00	00000	000
Sequential	Probability Ratio T	est (SPRT)	

- Let p denote the probability of a defect, p_0 a tolerable value, and $p_1 > p_0$ an intolerable one.
- The null hypothesis is $H_0: p = p_0$, while the alternative hypothesis is $H_1: p = p_1$.
- SPRT defines A_n and R_n as:

where the parameters α and β allows to control type I and type II errors, respectively.

F. Chiariello

Introduction	Approach	Experiments	Conclusion
000000	000●0	00000	
SPRT (cont'd)			

• We can therefore rewrite A_n and R_n as:

 $A_n = mn + c_A,$ $R_n = mn + c_R,$

with m > 0, $c_A < 0$, and $c_R > 0$.

Introduction	Approach	Experiments	Conclusion
000000	0000●	00000	
Trace Alignment			

- Trace Alignment is the problem of aligning a trace π with a formula φ, producing a new trace π' satisfying φ.
- Actions:
 - add(?activity), of cost 1,
 - del, of cost 1,
 - read, of cost 0.
- Repair a trace can be reduced to cost-optimal planning.

Example		
arphi = G(a ightarrow Fb)	$\pi={\sf aba}$	$\pi'=aba$
I read: a ba		
🛛 read: ab a		
3 del: ab		

Introd	uction
	00

Experiments

Table of Contents

Introduction

- Sequential Analysis
- Event Logs
- LTLp

2 Approach

Conclusion

Introduction Approach Experiments Conclusion

Declarative Model

We consider the declarative model over $\Sigma = \{a, b, c, d, e\}$ specified by the following 5 constraints:

$$\begin{array}{ll} (C1) & ExclusiveChoice(c,d) \equiv \mathsf{F}(c \lor d) \land \neg(\mathsf{F}c \land \mathsf{F}d) \\ (C2) & Response(a,b) \equiv \mathsf{G}(a \to \mathsf{F}b) \\ (C3) & RespondedExistence(a,e) \equiv \mathsf{F}a \to \mathsf{F}e \\ (C4) & Precedence(e,a) \equiv (\neg a)\mathsf{W}e \\ (C5) & AlternateResponse(b,c) \equiv \mathsf{G}(b \to \mathsf{X}(\neg b\mathsf{U}c)) \\ \end{array}$$

• We generate a log of 100 traces of length varying from 6 to 15. In particular, for each length, we generate 5 positive traces and 5 negative ones.

Table: Number of traces violating the constraints arranged according to the cost of repairs.

	1	2	3+	#traces	total cost
C1	19	13	6	38	68
C2	14	0	0	14	14
C3	9	0	0	9	9
C4	31	0	0	31	31
C5	16	15	2	33	52

Introduction	Approach	Experiments	Conclusion
000000	00000	000€0	

Results

• We choose $m = 1, c_R = 8, c_A = -8$.

Introduction	Approach	Experiments	Conclusion
000000	00000	0000●	

Results

• We choose $m = 1, c_R = 8, c_A = -8$.

Table of Contents

Introduction

- Sequential Analysis
- Event Logs
- LTLp
- 2 Approach
- 3 Experiments

Conclusion and Future Work

Contributions:

- Learn LTL formulae with sequential analysis.
- Quantify defects using trace alignment.
- Approach robust and data-efficient.

Future Directions:

- Select candidate formulae.
- Learn full model.
- Quantitative semantics.

Thank you for your attention!

Financé par

Financé par l'Union européenne