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Highlights

• A new approach is proposed for Temporal
Reasoning in ASP;

• The approach takes advantage of the automata
representation of ltlf formulae;

• It is shown how to apply it for solving three
DPM problems: Log Generation, Conformance
Checking, and Query Checking;

• Poster based on work that appeared in [1, 2, 3]

Declarative Process Mining

Declarative Process Mining [4] is a subfield of Pro-
cess Mining where processes are modeled using
constraint-based languages, such as declare [5] or
ltlf [6].

LTLf

• Linear-Time Temporal logic on finite traces
(ltlf) is a logic that allows expressing properties
of finite sequences, called traces.

• Given a set P of propositional symbols, the
syntax is defined by the following grammar:

φ ::= A | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

with A ∈ P .
• Given a formula φ, a trace

π = π1, π2, . . . , πlen(π) ∈ (2P)+, and a time
instant i, with 1 ≤ i ≤ len(π), the semantics is
defined as follows:
• π, i |= A iff A ∈ πi ,
• π, i |= ¬φ iff π, i ̸|= φ,
• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2,
• π, i |= Xφ if i < len(π) and π, i + 1 |= φ,
• π, i |= φ1Uφ2 iff π, j |= φ2 for some j, with

i ≤ j ≤ len(π), and π, k |= φ1 for all k = i, . . . , j − 1.
• Common abbreviations used are:

• true, →, ∨
• Fφ ≡ trueUφ
• Gφ ≡ ¬F¬φ
• φ1Wφ2 ≡ φ1Uφ2 ∨ Gφ1

DECLARE as LTLf

Template Formula
Absence(a) ¬Fa

Existence(a) Fa
Response(a, b) G(a → Fb)

NotResponse(a, b) G(a → ¬Fb)
RespondedExistence(a, b) Fa → Fb
AlternateResponse(a, b) G(a → X(¬aUb))

Precedence(a, b) ¬bWa

LTLf2DFA

For each ltlf formula, there exists a finite-state au-
tomaton that accepts exactly the traces satisfying
the formula.

Figure: Automaton of Response(a, b) template:
(left) as obtained by available ltlf tools for conversion
(right) simplified by exploiting that we work with process traces

ASP

• Answer Set Programming [7] is a declarative
problem solving approach inspired by Logic
Programming and SAT.

• Given a problem, this is modeled as a logic
program and is fed into an ASP system, such as
clingo [8]. The system then computes the stable
models of the program, each corresponding to a
different solution to the problem.

Encoding Temporal Problems in
ASP

Given a problem involving temporal specifications
one can represent the corresponding automata in
ASP and simulate their running over a trace. The
problems then reduce to checking whether the au-
tomata accept the trace.

ASP encoding of Response(a, b).

Problems

• Log generation: use generation rules for guessing
a trace and a test rule for checking whether the
trace is accepted.

• Conformance Checking: just check whether the
traces are accepted.

• Query Checking: guess a template instantiation
and check if the automata obtained accepts the
log.

Conclusions and Future Work

• We have seen how to solve DPM problems using
ASP;

• The solution is based on exploiting the automata
representation of the process models;

• The approach is applicable to many other DPM
problems, e.g., Process Discovery and Trace
Alignment;

• One could also consider more in general PM
problems by using ASP for modeling Petri nets.
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