
ASP-Based Declarative Process Mining
Francesco Chiariello

DIAG - Sapienza University of Rome

Highlights

• A new approach is proposed for Temporal
Reasoning in ASP;

• The approach takes advantage of the automata
representation of ltlf formulae;

• It is shown how to apply it for solving three
DPM problems: Log Generation, Conformance
Checking, and Query Checking;

• Poster based on work that appeared in [1, 2, 3]

Declarative Process Mining

Declarative Process Mining [4] is a subfield of Pro-
cess Mining where processes are modeled using
constraint-based languages, such as declare [5] or
ltlf [6].

LTLf

• Linear-Time Temporal logic on finite traces
(ltlf) is a logic that allows expressing properties
of finite sequences, called traces.

• Given a set P of propositional symbols, the
syntax is defined by the following grammar:

φ ::= A | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2

with A ∈ P .
• Given a formula φ, a trace

π = π1, π2, . . . , πlen(π) ∈ (2P)+, and a time
instant i, with 1 ≤ i ≤ len(π), the semantics is
defined as follows:
• π, i |= A iff A ∈ πi ,
• π, i |= ¬φ iff π, i ̸|= φ,
• π, i |= φ1 ∧ φ2 iff π, i |= φ1 and π, i |= φ2,
• π, i |= Xφ if i < len(π) and π, i + 1 |= φ,
• π, i |= φ1Uφ2 iff π, j |= φ2 for some j, with

i ≤ j ≤ len(π), and π, k |= φ1 for all k = i, . . . , j − 1.
• Common abbreviations used are:

• true, →, ∨
• Fφ ≡ trueUφ
• Gφ ≡ ¬F¬φ
• φ1Wφ2 ≡ φ1Uφ2 ∨ Gφ1

DECLARE as LTLf

Template Formula
Absence(a) ¬Fa

Existence(a) Fa
Response(a, b) G(a → Fb)

NotResponse(a, b) G(a → ¬Fb)
RespondedExistence(a, b) Fa → Fb
AlternateResponse(a, b) G(a → X(¬aUb))

Precedence(a, b) ¬bWa

LTLf2DFA

For each ltlf formula, there exists a finite-state au-
tomaton that accepts exactly the traces satisfying
the formula.

Figure: Automaton of Response(a, b) template:
(left) as obtained by available ltlf tools for conversion
(right) simplified by exploiting that we work with process traces

ASP

• Answer Set Programming [7] is a declarative
problem solving approach inspired by Logic
Programming and SAT.

• Given a problem, this is modeled as a logic
program and is fed into an ASP system, such as
clingo [8]. The system then computes the stable
models of the program, each corresponding to a
different solution to the problem.

Encoding Temporal Problems in
ASP

Given a problem involving temporal specifications
one can represent the corresponding automata in
ASP and simulate their running over a trace. The
problems then reduce to checking whether the au-
tomata accept the trace.

ASP encoding of Response(a, b).

Problems

• Log generation: use generation rules for guessing
a trace and a test rule for checking whether the
trace is accepted.

• Conformance Checking: just check whether the
traces are accepted.

• Query Checking: guess a template instantiation
and check if the automata obtained accepts the
log.

Conclusions and Future Work

• We have seen how to solve DPM problems using
ASP;

• The solution is based on exploiting the automata
representation of the process models;

• The approach is applicable to many other DPM
problems, e.g., Process Discovery and Trace
Alignment;

• One could also consider more in general PM
problems by using ASP for modeling Petri nets.

References

[1] Francesco Chiariello, Fabrizio Maria Maggi, and Fabio
Patrizi. ASP-Based Declarative Process Mining.
Proceedings of the AAAI Conference on Artificial
Intelligence, 36(5):5539–5547, June 2022. Number: 5.

[2] Francesco Chiariello, Fabrizio Maria Maggi, and Fabio
Patrizi. ASP-based declarative process mining (extended
abstract). In Proceedings of the 38th International
Conference on Logic Programming (Technical
Communications) (ICLP). Electronic Proceedings in
Theoretical Computer Science (EPTCS), 2022.

[3] Francesco Chiariello, Fabrizio Maria Maggi, and Fabio
Patrizi. A tool for compiling Declarative Process Mining
problems in ASP. Software Impacts, page 100435,
October 2022.

[4] Claudio Di Ciccio and Marco Montali. Declarative process
specifications: Reasoning, discovery, monitoring. In Wil
M. P. van der Aalst and Josep Carmona, editors, Process
Mining Handbook, volume 448 of Lecture Notes in
Business Information Processing, pages 108–152.
Springer, 2022.

[5] Wil M. P. van der Aalst, Maja Pesic, and Helen
Schonenberg. Declarative workflows: Balancing between
flexibility and support. Comput. Sci. Res. Dev.,
23(2):99–113, 2009.

[6] Giuseppe De Giacomo and Moshe Y. Vardi. Linear
temporal logic and linear dynamic logic on finite traces. In
Francesca Rossi, editor, IJCAI 2013, Proceedings of the
23rd International Joint Conference on Artificial
Intelligence, Beijing, China, August 3-9, 2013, pages
854–860. IJCAI/AAAI, 2013.

[7] Gerhard Brewka, Thomas Eiter, and Miroslaw
Truszczynski. Answer set programming at a glance.
Commun. ACM, 54(12):92–103, 2011.

[8] Martin Gebser, Roland Kaminski, Benjamin Kaufmann,
and Torsten Schaub. Multi-shot ASP solving with clingo.
Theory Pract. Log. Program., 19(1):27–82, 2019.

Acknowledgements

Work partly supported by the ERC Advanced Grant White-
Mech (No. 834228), the EU ICT-48 2020 project TAI-
LOR (No. 952215), the EU ICT-49 2021 project AI-
Plan4EU (No. 101016442), and the PRIN project RIPER
(No. 20203FFYLK).

