
Temporal Reasoning in ASP and its Application to Declarative Process Mining

Francesco Chiariello1, Fabrizio Maria Maggi2, Fabio Patrizi1

1 DIAG - Sapienza University of Rome, Italy
2 KRDB - Free University of Bozen-Bolzano, Italy

chiariello@diag.uniroma1.it, maggi@inf.unibz.it, patrizi@diag.uniroma1.it

Abstract

We propose a new approach for solving temporal problems
with Answer Set Programming that exploit the automata rep-
resentation of LTLf formulae and apply it to a selection of
Declarative Process Mining problems.

Introduction
Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2011) is a declarative problem solving ap-
proach that has become very popular in the last years also
thanks to the development of efficient ASP systems such as
DLV (Alviano et al. 2017) and clingo (Gebser et al. 2019).
Given a problem, this is modeled as a logic program and
is fed into an ASP system. The system then computes the
answer sets of the program (which can be roughly thought
of as models of the program), each corresponding to a
different solution to the problem.

To take advantage of the capabilities of ASP systems to
solve problems involving temporal specifications, the idea
we propose (Chiariello, Maggi, and Patrizi 2022a) is to use
the well-known relationship between finite-state automata
and LTLf formulae (De Giacomo and Vardi 2013). In
fact, one can represent LTLf formulae in an ASP program
by simply encoding the corresponding automata. In this
way, checking whether a trace satisfies the specifications
reduces to checking whether the automata accept such a
trace, which is easily done in ASP. Note also that ASP has
different advantages. First, it provides clear and concise
syntax inspired by Logic Programming and Prolog, to
model problems. Second, the minimality of its semantics
makes it very efficient at solving problems over graph-like
structures (compared e.g. to SAT), thus making ASP a
natural choice for the problems of interest.

In (Chiariello, Maggi, and Patrizi 2022b) we have
considered various temporal problems from Declarative
Process Mining and have shown how to apply the approach
described above. Process Mining (PM) (van der Aalst and
Carmona 2022) is a research area that deals with analyzing
event logs to extract information related to the process that
generated the log. Logs are collections of sequences of ac-
tivities. Processes are modeled using different formalisms.

In the case of Declarative Process Mining (DPM) (Di Ciccio
and Montali 2022), process models are specified using
logical formalisms such as DECLARE (van der Aalst,
Pesic, and Schonenberg 2009) or LTLf , which constitutes a
generalization of the former.

Log Generation is the problem of generating a set of
sequences satisfying a given input model. It is worth noting
that in PM at each sequence’s position there is only one
activity. Therefore, such sequences differ from the traces
usually seen in LTLf . However, we can think of them as
particular traces where the propositional interpretations
are singleton. For that reason, we shall call them just
‘traces’, or ‘process traces’ when we want to emphasize
their peculiarity. Conformance Checking is the problem of
checking whether the traces of a model satisfy a given input
model. Finally, Query checking is the problem of checking
constraint templates, i.e. formulae with variables, against a
log in order to find the instantiations compliant with the log.

These problems can be easily solved with ASP once the
automata corresponding to the input model/formulae are
available. The automata can be obtained using available
tools such as Lydia1 or LTLf2DFA23. Figure 1 shows the
automaton corresponding to the DECLARE template
Response(a, b) which is satisfied when every time activity
a is performed, it is eventually followed by activity b.
This corresponds to the LTLf formula G(a → Fb). Note
that simplifications can be made (although they are not
necessary) in the ASP encoding by exploiting the fact that
we are working with process traces, i.e. only one activity
is performed at a time. The corresponding ASP encoding
is instead shown in Listings 1. Here, a and b represent
placeholders for the activation and target activity of the
Response template, while the new symbol c stands for any
other activity. It is then sufficient to add rules for updating
the current automata state while reading the traces and we
have all the ingredients we need for solving the problems.

For log generation, we add generation rules for guessing

1https://github.com/whitemech/lydia
2https://github.com/whitemech/LTLf2DFA
3http://ltlf2dfa.diag.uniroma1.it/



Figure 1: Automaton of Response template: (left) as ob-
tained by LTLf2DFA (right) after simplification

the candidate answer set corresponding to a trace, and a test
rule to check whether the trace is accepted by the automata.
The case of conformance checking is even simpler since no
generation rules are required: the traces are already given.
We just need to test whether they are accepted. For query
checking, we use generation rules to guess the instantiation
and then check whether the input log satisfies the formula so
obtained.

Listing 1: ASP encoding of Response template
1 automaton(s0,a,s1).
2 automaton(s1,b,s0).
3 automaton(s0,b,s0).
4 automaton(s0,c,s0).
5 automaton(s1,a,s1).
6 automaton(s1,c,s1).
7 initial(s0).
8 accepting(s0).

The problems we considered are relatively simple and
they are intended just to demonstrate the potential of the
approach. Nevertheless, the results were so satisfying that
made the authors of the DPM toolkit RuM (Alman et al.
2020) integrates it into their application for log generation.
Following our approach, (Ielo, Ricca, and Pontieri 2022)
proposes to use it for Process Discovery (i.e. finding a model
of the log) while using the ASP optimization capabilities to
take into account also user preferences. The optimization ca-
pabilities can also be used for solving other complex PM
problems such as Trace Alignment (i.e. modifying a log to
make it compliant with a given model) which can be for-
mulated as cost-optimal planning (De Giacomo et al. 2017).
Finally, we stress that, while we have considered here DPM
problems, there is no reason to limit ourselves to this partic-
ular domain since the approach can be virtually applied to
any problem involving LTLf specifications.

Acknowledgments
Work partly supported by the ERC Advanced Grant White-
Mech (No. 834228), the EU ICT-48 2020 project TAI-
LOR (No. 952215), the EU ICT-49 2021 project AI-
Plan4EU (No. 101016442), and the PRIN project RIPER
(No. 20203FFYLK).

References
Alman, A.; Di Ciccio, C.; Haas, D.; Maggi, F. M.; and
Mendling, J. 2020. Rule Mining in Action: The RuM

Toolkit. In Di Ciccio, C.; Depaire, B.; Weerdt, J. D.;
Francescomarino, C. D.; and Munoz-Gama, J., eds., Pro-
ceedings of the ICPM Doctoral Consortium and Tool
Demonstration Track 2020, volume 2703 of CEUR Work-
shop Proceedings, 51–54. CEUR-WS.org.
Alviano, M.; Calimeri, F.; Dodaro, C.; Fuscà, D.; Leone, N.;
Perri, S.; Ricca, F.; Veltri, P.; and Zangari, J. 2017. The
ASP System DLV2. In Balduccini, M.; and Janhunen, T.,
eds., Logic Programming and Nonmonotonic Reasoning -
14th International Conference, LPNMR 2017, Espoo, Fin-
land, July 3-6, 2017, Proceedings, volume 10377 of Lecture
Notes in Computer Science, 215–221. Springer.
Brewka, G.; Eiter, T.; and Truszczynski, M. 2011. Answer
set programming at a glance. Commun. ACM, 54(12): 92–
103.
Chiariello, F.; Maggi, F.; and Patrizi, F. 2022a. ASP-Based
Declarative Process Mining (Extended Abstract). In Pro-
ceedings of the 38th International Conference on Logic Pro-
gramming (Technical Communications) (ICLP). Electronic
Proceedings in Theoretical Computer Science (EPTCS).
Chiariello, F.; Maggi, F. M.; and Patrizi, F. 2022b. ASP-
Based Declarative Process Mining. In Thirty-Sixth AAAI
Conference on Artificial Intelligence, AAAI 2022, 5539–
5547. AAAI Press.
De Giacomo, G.; Maggi, F. M.; Marrella, A.; and Patrizi, F.
2017. On the Disruptive Effectiveness of Automated Plan-
ning for LTLf -Based Trace Alignment. In Singh, S.; and
Markovitch, S., eds., Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence, February 4-9, 2017,
San Francisco, California, USA, 3555–3561. AAAI Press.
De Giacomo, G.; and Vardi, M. Y. 2013. Linear Temporal
Logic and Linear Dynamic Logic on Finite Traces. In Rossi,
F., ed., IJCAI 2013, Proceedings of the 23rd International
Joint Conference on Artificial Intelligence, Beijing, China,
August 3-9, 2013, 854–860. IJCAI/AAAI.
Di Ciccio, C.; and Montali, M. 2022. Declarative Pro-
cess Specifications: Reasoning, Discovery, Monitoring. In
van der Aalst, W. M. P.; and Carmona, J., eds., Process Min-
ing Handbook, volume 448 of Lecture Notes in Business In-
formation Processing, 108–152. Springer.
Gebser, M.; Kaminski, R.; Kaufmann, B.; and Schaub, T.
2019. Multi-shot ASP solving with clingo. Theory Pract.
Log. Program., 19(1): 27–82.
Ielo, A.; Ricca, F.; and Pontieri, L. 2022. Declarative Mining
of Business Processes via ASP. In Giacomo, G. D.; Guzzo,
A.; Montali, M.; Limonad, L.; Fournier, F.; and Chakraborti,
T., eds., Proceedings of the Workshop on Process Manage-
ment in the AI Era (PMAI 2022), volume 3310 of CEUR
Workshop Proceedings, 105–108. CEUR-WS.org.
van der Aalst, W. M. P.; and Carmona, J., eds. 2022. Process
Mining Handbook, volume 448 of Lecture Notes in Business
Information Processing. Springer. ISBN 978-3-031-08847-
6.
van der Aalst, W. M. P.; Pesic, M.; and Schonenberg, H.
2009. Declarative workflows: Balancing between flexibil-
ity and support. Comput. Sci. Res. Dev., 23(2): 99–113.


